中華民國第51屆中小學科學展覽會作品說明書

國小組 化學科

第三名

080213

你「蒜」哪根「蔥」—蔥蒜抗氧化力之探討

學校名稱:彰化縣彰化市民生國民小學

作者:

小五 阮子銘

小五 蔡耕慧

小六 姜若淳

小五 呂致廣

小五 徐嘉芊

小五 周栩仡

指導老師:

林淑珍

張榮裕

關鍵詞:蔥、蒜、抗氧化力

你「蒜」哪根「蔥」

蔥蒜抗氧化力之探討

摘 要

蔥、蒜除了是料理不可或缺的重要角色外,更因為其具有抗氧化力等功效而引起各界的關注,本研究除了比較從蒜不同部位的抗氧化力之外,也由實驗結果發現溫度及其他添加物(米酒)對於蔥蒜的抗氧化力所造成的影響,根據此結果可選擇最適宜的保存或調理方式,以使蔥蒜的營養價值能保持在其最佳狀態下。實驗顯示:(一)取用不同部位的蔥蒜,抗氧化力亦會不同:在蔥的部分以蔥頭的抗氧化力最佳(約為蔥綠與蔥白的1.3倍);蒜的部分則以蒜綠尤佳(約為蒜白與蒜尾的1.3倍),而蒜頭更是具有比蒜綠好上兩倍的抗氧化力。(二)經過不同溫度的處理會影響抗氧化力:蔥於低溫下具較佳的抗氧化力,蒜則於常溫下有較好的抗氧化力。(三)米酒添加會提高蔥蒜的抗氧化力。

壹、 研究動機

「好香!」夜市的香腸攤傳來陣陣誘人的香氣,「吃香腸一定要配著蒜頭才夠味!」爸爸總是這麼說。在飯桌上,媽媽各式各樣的拿手菜中,也常常出現蔥蒜的蹤影,「加點蔥花煮出來的菜和湯才會更香呀!」媽媽說。最近在網路上看到許多關於蔥蒜的資訊,才發現食用蔥蒜似乎真的是好處多多,除了大家所熟知的可做為料理的調味外,還有抗癌的功用,更有婆婆媽媽們所追求的抗老功效,這麼多的效用不禁讓我們對蔥蒜產生極大的好奇心,進而展開一連串對於蔥蒜的研究。基於最近抗氧化(抗老)一直是大家熱烈討論的話題,因此本組的研究亦著重在探討蔥蒜氧化力的部分。

相關教學單元:認識植物(三上)、廚房裡的科學(三上)

貳、研究目的

- 一、研究探討蔥蒜及蒜頭不同部位之抗氧化力
- 二、研究探討不同溫度對蔥蒜及蒜頭抗氧化力之影響
- 三、研究探討米酒對蔥蒜及蒜頭抗氧化力之影響
- 四、研究探討發芽對蒜頭抗氧化力之影響

叁、研究器材及材料

一、實驗器材:

二、實驗藥品及材料:

肆、研究方法與過程記錄

一、相關文獻:

(一) 蔥的小檔案:

別名	青蔥、大蔥、葉蔥、胡蔥、蔥仔、菜伯、水蔥、事草、水晶管
產地	原產於西伯利亞。
分佈	台灣以宜蘭縣三星鄉所產三星蔥最為著名。
	1. 葉部綠色部份稱「蔥管」(本實驗中將綠色與白色部分區分為蔥白與蔥
用途	綠),鱗莖稱「蔥頭」。
	2. 去腥味、解寒性、發汗、興奮、祛痰、利尿、驅蟲等功效。

(二)蒜的小檔案:

別名	葫、胡蒜、麝香草、蒜、大豆蒜、珠芽小蒜、胎生小蒜
產地	漢朝時由張騫自西域引進中國,台灣由開台先民自大陸引進。
分佈	台灣主要產地為雲林、嘉義、臺南等縣市。
用途	1. 剛萌芽的大蒜葉稱「蒜苗」,大蒜莖葉呈綠色時稱「青蒜」,鱗瓣聚
	合的蒜球稱「蒜頭」,蒜頭除去內、外膜稱「蒜仁」。
	2. 幫助消化、促進食慾、健胃、去腥味、抗菌、提高免疫機能、抗癌、
	降低膽固醇、降血脂、促進血液循環等功效。

(三) 什麼是氧化? 為什麼要抗氧化?

人藉由呼吸吸收空氣中的氧,來進行體內各項機能的運作,因此氧是維持生命不可或缺的物質,但是我們吸入體內的氧氣大約有部分會轉變成活性氧(自由基),此種不安定的氧自由基會造成體內物質的氧化,而加速細胞氧化即加速老化的元兇,當細胞發生氧化時會造成皮膚的老化如:皺紋、斑點、粉刺等,內在器官與血管也會因氧化而產生老化與功能的衰退,是造成心臟血管疾病、高血壓、糖尿病等成人病的主要原因。因此人類既要依賴氧氣又需要避免這類氧化反應與自由基的產生,除了有賴於人體本身形成的抗氧化酵素外,亦可由食物中攝取抗氧化的物質,本組實驗研究對象一蔥蒜即為一般認為富含抗氧化物質之蔬菜。

二、實驗原理:

本組研究主要原理為<mark>碘滴定法</mark>—以澱粉作為指示劑,當碘與澱粉結合即成深藍色;碘被還原成碘離子,遇到澱粉沒有反應故溶液成無色。抗氧化劑加入碘液後,溶液顏色由透明變深藍時,即達滴定終點。等量的抗氧化劑(濾液),還原碘的量越多,表示其抗氧化力越好。

$$I_2$$
—澱粉 $\xrightarrow{\text{抗氧化劑}} 2I^-$ —澱粉 (深藍) (無色)

三、實驗流程:

前置作業

(一) 實驗流程優化:

- 1. 初始使用抽氣過濾方式過濾,但過濾速度極慢,後改以紗布過濾後再以抽氣過濾裝置過濾,減少過濾時間。
- 初始以濾液滴定等量碘液,但碘液濃度過高,需耗用大量濾液,且滴定終點難以判斷。 後嘗試以製作空白對照組與活性碳的方式,但成效不彰。最後改以碘液滴定等量的濾液, 既可減少濾液之使用,滴定終點之判定亦較為容易。
- 初始於常溫下滴定,發現滴定後溶液顏色會慢慢變淡,可能是此反應速率過慢導致反應不完全。後將濾液加熱至60℃後再開始滴定,利用溫度提高加快反應速率,使反應完全。

(二) 實驗流程圖:

步驟 1 澱粉指示劑之製備					反製備(0.02M)	
				14		
1. 以錐形瓶取	200mL 蒸餾水,	加入 4g 澱粉	1.	秤取 10g 碘化鉀	(KI)溶於 20mL 水中	
2. 置於加熱板	上以玻棒加熱攪	半至沸騰	2.	秤取 2.54g 碘置	入步驟1的溶液中,	
3. 冷卻至室溫				將溶液移入 1000	mL 的容量瓶中	
			3.	加水稀釋至刻度	線	
		步驟 3	濾液的	的製備 		
步驟 3-1	步驟 3-2	步驟 3-	3	步驟 3-4	步驟 3-5	
秤重	打成汁	過濾I		過濾 II	得到濾液	
以電子天平秤	倒入所秤之樣	步驟 3-2 所	得	利用抽氣過濾	以空瓶收集所得濾	
取 100g 樣品	品與 200mL 蒸	蔬菜汁先以	人紗	的方式將步驟	液,並貼上標籤	
	餾水於果汁機	布(摺成三)	鬙)	3-3 之濾液再次		
	中攪碎2分鐘	過濾之		過濾		
		步驟 4 抗氧	貳化力]測定		
Ż	步驟 4-1 加熱			步驟 4-2	2 滴定	
取錐形瓶 A,B 各加入 10mL 濾液,與澱粉指				以碘液滴定錐形瓶 A 內之溶液,直到溶液		
示劑 10 滴,加熱	熱至 60℃		顏色明顯改變,紀錄結果;錐形瓶 B 則加			
			八寺	量的蒸餾水作為對	10 15 20 20 20 20 20 20 20 20 20 20 20 20 20	

伍、研究結果

實驗一: 蔥白、蔥綠、蔥頭抗氧化力之研究

媽媽在煮菜時,無論在處理蔥或是蒜時,總會先把根部(蔥頭、蒜尾)去掉,再將剩下的部分切成一段一段的,為什麼根部不能吃呢?是因為根部的賣相不佳?還是因為根部沒有其營養價值?那綠色的部分(蔥綠、蒜綠)和白色的部分(蔥白、蒜白)的營養成分是不是也有差異呢?基於這個想法我們這組做了研究一與研究二兩個研究主題,希望能了解各部位的蔥蒜在抗氧化力的部分是不是有其差異。

(一) 樣品製備步驟:

- 1. 將 100g 蔥白加入 200mL 蒸餾水於果汁機中攪碎兩分鐘。
- 2. 先以紗布過濾殘渣後,再以抽氣過濾裝置進行過濾。
- 3. 將蔥白換成蔥綠與蔥頭,重複前述步驟。

(二) 抗氧化力之測定:

- 1. 取錐形瓶 A,B 各加入 10mL 濾液,與滴加澱粉指示劑 10 滴。
- 2. 將兩錐形瓶加熱至60℃後,以碘液滴定錐形瓶A內之溶液,直到溶液顏色明顯改變, 紀錄結果;錐形瓶B則加入等量的蒸餾水作為對照組。

(三)實驗紀錄:

表 4-1 不同部位之蔥濾液的滴定

類別	碘液體積(mL)	碘液體積(mL)	平均(mL)	外觀顏色變化
葱白	1.85	1.75	1.80	→ 深藍色
蔥綠	1.65	1.60	1.63	→ 深藍色
蔥頭	2.25	2.25	2.25	→藍紫色

(圖 4-1-1) 蔥白濾液滴定前 & 滴定後

(圖 4-1-2) 蔥綠濾液滴定前 & 滴定後

(圖 4-1-3) 蔥頭濾液滴定前 & 滴定後

實驗二:蒜白、蒜綠、蒜尾、蒜頭抗氧化力之研究

(一) 樣品製備步驟:

- 1. 將 100g 蒜白加入 200mL 蒸餾水於果汁機中攪碎兩分鐘。
- 2. 先以紗布過濾殘渣後,再以抽氣過濾裝置進行過濾。
- 3. 將蒜白依序換成蒜綠、蒜尾、蒜頭,重複前述步驟。

(二) 抗氧化力之測定:

- 1. 取錐形瓶 A,B 各加入 10mL 濾液,與滴加澱粉指示劑 10滴。
- 2. 將兩錐形瓶加熱至 60℃後,以碘液滴定錐形瓶 A 內之溶液,直到溶液顏色明顯改變, 紀錄結果;錐形瓶 B 則加入等量的蒸餾水作為對照組。

(三) 實驗紀錄:

表 4-2 不同部位之蒜濾液的滴定

類別	碘液體積(mL)	碘液體積(mL)	平均(mL)	外觀顏色變化
蒜白	1.50	1.50	1.50	→ 深藍色
蒜綠	2.00	1.90	1.95	→ 深綠色
蒜尾	1.35	1.25	1.30	→ 深藍色
蒜頭	4.00	4.25	4.13	→ 深灰色

(圖 4-2-1) 蒜頭濾液滴定前 & 滴定後

(圖 4-2-2) 蒜白濾液滴定前 & 滴定後

(圖 4-2-3) 蒜綠濾液滴定前 & 滴定後

(圖 4-2-4) 蒜尾濾液滴定前 & 滴定後

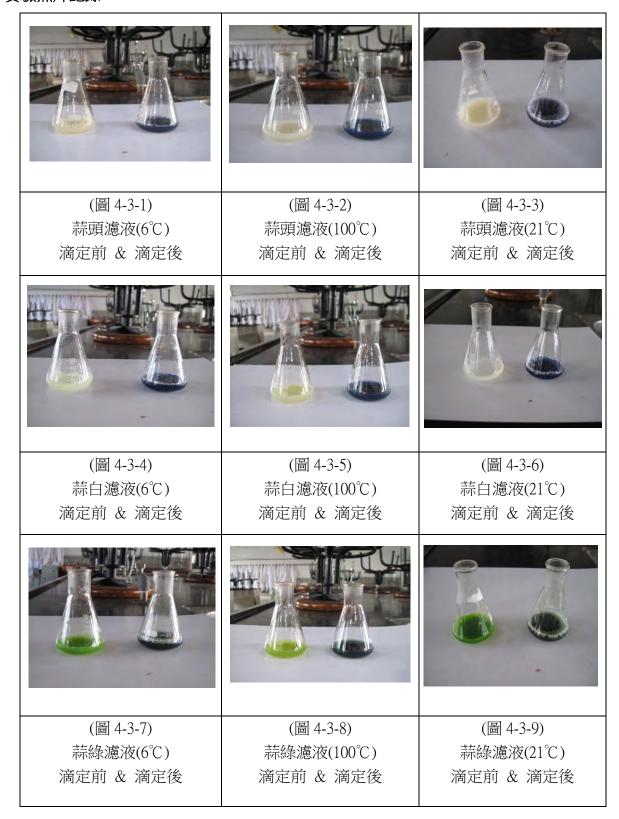
實驗三:不同溫度對蔥蒜及蒜頭抗氧化力影響之研究

剛買回來的蔥蒜,媽媽總是將它們孤伶的丟在牆角,但幾天過後,媽媽會將還未用完的蔥蒜洗淨切段後再冰到冰箱。對此我們不禁感到好奇,是因為以低溫處理的方式才能保鮮嗎? 又如果溫度會影響蔥蒜的新鮮度,那平常將蔥蒜拿來做料理時,常經過高溫水煮會或油炒,這樣難道不會使它們養分流失嗎?所以最好的品嚐方式,就像在夜市中看到配烤香腸時一樣生吃蔥蒜嗎?

(一) 樣品製備:

- 1. 將 100g 蒜頭置於冰箱(冷藏溫度為 6℃)中 24 小時後取出,加入 200mL 蒸餾水於果汁機中攪碎兩分鐘。
- 2. 先以纱布過濾殘渣後,再以抽氣過濾裝置進行過濾。
- 3. 將蒜頭於沸水(約100℃)中煮3分鐘後取出,重複前述步驟。
- 4. 將蒜頭換成蒜白、蒜綠、蒜尾、蔥白、蔥綠、蔥頭,重複前述步驟。

(二) 抗氧化力測定:


- 1. 取錐形瓶 A.B 各加入 10mL 濾液,與滴加澱粉指示劑 10 滴。
- 2. 將兩錐形瓶加熱至60℃後,以碘液滴定錐形瓶 A 內之溶液,直到溶液顏色明顯改變, 紀錄結果;錐形瓶 B 則加入等量的蒸餾水作為對照組。

(三)實驗紀錄:

表 4-3 經不同溫度處理後之蔥蒜濾液的滴定

蒜 頭						
溫度	碘液體積(mL)	碘液體積(mL)	平均(mL)	外觀顏色變化		
6°C	1.85	2.10	1.98	→ 深藍色		
100°C	2.40	2.35	2.38	→ 深藍色		
21℃	4.90	4.85	4.88	→灰紫色		
		蒜白				
溫度	碘液體積(mL)	碘液體積(mL)	平均(mL)	外觀顏色變化		
6°C	1.00	1.10	1.05	→ 深藍色		
100°C	1.10	1.15	1.13	→ 深藍色		
21°C	1.40	1.35	1.38	→深藍色		

		蒜綠		
温度	碘液體積(mL)	碘液體積(mL)	平均(mL)	外觀顏色變化
6°C	1.15	1.10	1.13	→ 深綠色
100°C	1.25	1.25	1.25	→ 深綠色
21°C	1.75	1.75	1.75	→ 深綠色
		蒜 尾		
溫度	碘液體積(mL)	碘液體積(mL)	平均(mL)	外觀顏色變化
6°C	1.50	1.35	1.43	→ 深藍色
100°C	1.40	1.25	1.33	→ 深藍色
21°C	1.50	1.25	1.38	→ 深藍色
		蔥 白		
溫度	碘液體積(mL)	碘液體積(mL)	平均(mL)	外觀顏色變化
6°C	1.5	1.65	1.58	→ 深紫色
100°C	1.00	1.00	1.00	→ 深藍色
21℃	1.00	1.00	1.00	→深藍色
		蔥 綠		
温度	碘液體積(mL)	碘液體積(mL)	平均(mL)	外觀顏色變化
6°C	1.40	1.35	1.38	→ 深藍色
100°C	0.85	1.00	0.93	→藍綠色
21℃	0.85	0.90	0.88	→藍綠色
		蔥頭		
温度	碘液體積(mL)	碘液體積(mL)	平均(mL)	外觀顏色變化
6℃	2.10	2.15	2.13	→藍紫色
100°C	1.35	1.50	1.43	→ 深藍色
21°C	1.25	1.25	1.25	→深藍色

(圖 4-3-10) 蒜尾濾液(6℃) 滴定前 & 滴定後

(圖 4-3-11) 蒜尾濾液(100℃) 滴定前 & 滴定後

(圖 4-3-12) 蒜尾濾液(21℃) 滴定前 & 滴定後

(圖 4-3-13) 蔥白濾液(6℃) 滴定前 & 滴定後

(圖 4-3-14) 蔥白濾液(100℃) 滴定前 & 滴定後

(圖 4-3-15) 蔥白濾液(21℃) 滴定前 & 滴定後

(圖 4-3-16) 蔥綠濾液(6℃) 滴定前 & 滴定後

(圖 4-3-17) 蔥綠濾液(100℃) 滴定前 & 滴定後

(圖 4-3-18) 蔥綠濾液(21℃) 滴定前 & 滴定後

(圖 4-3-19) 蔥頭濾液(6℃) 滴定前 & 滴定後

(圖 4-3-20) 蔥頭濾液(100℃) 滴定前 & 滴定後

(圖 4-3-21) 蔥頭濾液(21℃) 滴定前 & 滴定後

實驗四:米酒對蔥蒜及蒜頭抗氧化力影響之研究

米酒是媽媽們煮菜時常常使用的調味品,因此本組在做研究時想知道加入米酒是不是會 影響蔥蒜與蒜頭的抗氧化力?

(一) 樣品製備步驟:

- 1. 將 100g 蒜頭置於米酒中浸泡半小時後取出,加入 200mL 蒸餾水於果汁機中攪碎兩分鐘。
- 2. 先以紗布過濾殘渣後,再以抽氣過濾裝置進行過濾。
- 3. 將蒜頭換成蒜白、蒜綠、蒜尾、蔥白、蔥綠、蔥頭,重複前述步驟。

(二) 抗氧化力測定:

- 1. 取錐形瓶 A,B 各加入 10mL 濾液,與滴加澱粉指示劑 10滴。
- 2. 將兩錐形瓶加熱至60℃後,以碘液滴定錐形瓶A内之溶液,直到溶液顏色明顯改變, 紀錄結果;錐形瓶B則加入等量的蒸餾水作為對照組。

(三)實驗紀錄:

表 4-4 浸泡米洒後之蔥蒜濾液的滴定

類別	碘液體積(mL)	碘液體積(mL)	平均(mL)	外觀顏色變化
蒜頭	4.15	4.60	4.38	→灰紫色
蒜白	1.00	1.00	1.00	→深藍色
蒜綠	1.50	1.60	1.55	→深綠色
蒜尾	1.50	1.60	1.55	→深藍色
蔥白	1.25	1.25	1.25	→深藍色
蔥綠	1.10	1.00	1.05	→深藍色
蔥頭	1.35	1.4	1.38	→ 深紫色

(圖 4-4-1) 蒜頭濾液 滴定前 & 滴定後

(圖 4-4-2) 蒜白濾液 滴定前 & 滴定後

(圖 4-4-3) 蒜綠濾液 滴定前 & 滴定後

(圖 4-4-4) 蒜尾濾液 滴定前 & 滴定後

(圖 4-4-5) 蔥白濾液 滴定前 & 滴定後

(圖 4-4-6) 蔥綠濾液 滴定前 & 滴定後

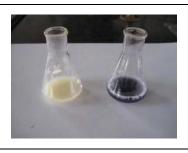
(圖 4-4-7) 蔥頭濾液 滴定前 & 滴定後

實驗五:發芽對蒜頭抗氧化力影響之研究

有人說發芽的蒜頭不要再用比較好,但發芽的蒜頭似乎又不像發芽的馬鈴薯會因此產生 毒素,那麼為什麼發芽了就不要用呢?針對這部分我們也作了一個比較,希望了解在抗氧化 力的部分,蒜頭是否會因為發芽而受到影響。

(一) 樣品製備步驟:

- 1. 將 100g 發芽(約 2cm)蒜頭加入 200mL 蒸餾水於果汁機中攪碎兩分鐘。
- 2. 先以紗布過濾殘渣後,再以抽氣過濾裝置進行過濾。


(二) 抗氧化力測定:

- 1. 取錐形瓶 A,B 各加入 10mL 濾液,與滴加澱粉指示劑 10滴。
- 2. 將兩錐形瓶加熱至 60℃後,以碘液滴定錐形瓶 A 內之溶液,直到溶液顏色明顯改變, 紀錄結果;錐形瓶 B 則加入等量的蒸餾水作為對照組。

(三) 實驗紀錄:

表 4-5 發芽與未發芽蒜頭濾液之滴定

類別	碘液滴數 1	碘液滴數 2	平均(mL)	外觀顏色變化
蒜頭	4.85	4.90	4.88	→灰紫色
發芽蒜頭	4.65	4.60	4.63	→ 灰紫色

(圖 4-5-1) 蒜頭濾液滴定前 & 滴定後

(圖 4-5-2) 發芽蒜頭濾液滴定前 & 滴定後

陸、討論

實驗一:蔥白、蔥綠、蔥頭抗氧化力之研究

(一)實驗結果:

表 5-1 不同部位之蔥濾液滴定結果

類別	碘液體積(mL)		
蔥白	1.80		
蔥綠	1.63		
蔥頭	2.25		

(二) 實驗結果討論:

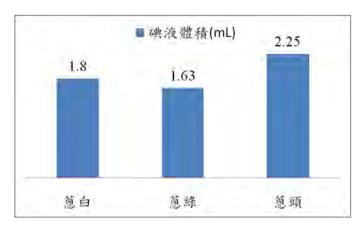


圖 5-1 不同部位之蔥濾液與碘液滴定用量關係圖

由(圖一)可知:

1. 不同部位之蔥段具有不等的抗氧化力,由大至小:<u>蔥頭>蔥白>蔥綠</u>,其中蔥頭的抗氧化力為蔥綠的 1.38 倍、蔥白的 1.25 倍。

實驗二:蒜白、蒜綠、蒜尾、蒜頭抗氧化力之研究

(一) 實驗結果:

表 5-2 不同部位之蒜濾液滴定結果

類別	碘液體積(mL)
蒜白	1.50
蒜綠	1.95
蒜尾	1.30
蒜頭	4.13

(二) 實驗結果討論:

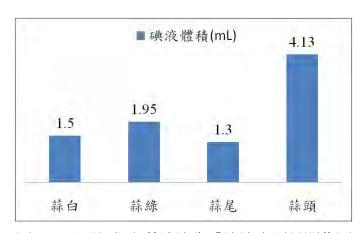


圖 5-2 不同部位之蒜濾液與碘液滴定用量關係圖

由(圖二)可知:

- 1. 不同部位的蒜具有不等的抗氧化力,其中蒜緣的抗氧化力為蒜白的1.3倍、蒜尾的1.5倍。
- 2. 蒜頭的抗氧化力更是蒜綠的 2.12 倍,可見蒜頭具有極佳的抗氧化力。

實驗三:不同溫度對蔥蒜及蒜頭抗氧化力影響之研究

(一) 實驗結果:

表 5-3-1 經不同溫度處理後之蔥蒜濾液的滴定結果

類別	碘液體積 (mL)	類別	碘液體積 (mL)	類別	碘液體積 (mL)
蒜頭 (6℃)	1.98	蒜頭 (100℃)	2.38	蒜頭 (21℃)	4.88
蒜自 (6℃)	1.05	蒜白 (100℃)	1.13	蒜白 (21℃)	1.38
蒜綠 (6°C)	1.13	蒜綠 (100℃)	1.25	蒜綠 (21℃)	1.75
蒜尾 (6℃)	1.43	蒜尾 (100℃)	1.33	蒜尾 (21℃)	1.38
蔥白 (6°C)	1.58	蔥白 (100℃)	1.00	蔥白 (21℃)	1.00
蔥綠 (6°C)	1.38	蔥綠 (100℃)	0.93	蔥綠 (21℃)	0.88
蔥頭 (6°C)	2.13	蔥頭 (100℃)	1.43	蔥頭 (21℃)	1.25

(二) 實驗結果討論:

表 5-3-2 經不同溫度處理後之蔥蒜濾液滴定結果比較

類別	低溫組(6℃)	高溫組(100℃)	常溫組(21℃)
蒜頭	1.98	2.38	4.88
蒜白	1.05	1.13	1.38
蒜綠	1.13	1.25	1.75
蒜尾	1.43	1.33	1.38
蔥白	1.58	1.00	1.00
蔥綠	1.38	0.93	0.88
蔥頭	2.13	1.43	1.25

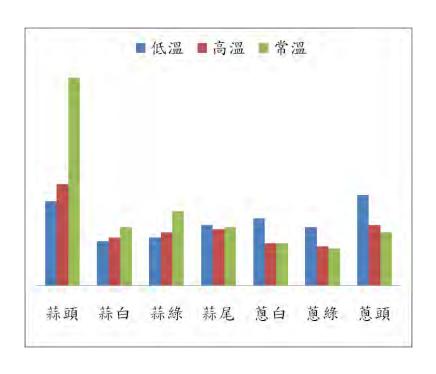


圖 5-3 不同溫度處理之蔥蒜濾液與碘液滴定用量關係圖

註:1.低溫為冷藏於6℃冰箱中24小時 2.高溫為於100℃沸水中煮3分鐘

由(圖三)可知:

- 1. 蒜頭、蒜白與蒜綠再經過無論是低溫冷藏或高溫處理後,其抗氧化力明顯的較原先差, 其中蒜頭的抗氧化力更是大幅減弱。因此,**蒜頭以生吃其抗氧化力較好**。
- 2. <mark>蒜尾</mark>的抗氧化力經過低溫冷藏或高溫處理後,並沒有明顯的改變,顯示<mark>溫度對蒜尾抗氧</mark> 化力的影響不大。
- 3. **蔥白、蔥綠與蔥頭**的抗氧化力經過低溫冷藏的抗氧化力明顯較佳,由於常溫及低溫使用的是同一批蔥,因此推測低溫冷藏應有助於蔥之抗氧化力維持。

實驗四:米酒對蔥蒜及蒜頭抗氧化力影響之研究

(一) 實驗結果:

表 5-4-1 浸泡米酒後之蔥蒜濾液的滴定結果

類別	碘液體積(mL)
蒜頭	4.38
蒜白	1.00
蒜綠	1.55
蒜尾	1.55
蔥白	1.25
蔥綠	1.05
蔥頭	1.38

(二)實驗結果討論:

表 5-4-2 浸泡米酒前後蔥蒜濾液之滴定結果比較

類別	未浸泡米酒	浸泡米酒
蒜頭	4.88	4.38
蒜白	1.38	1.00
蒜綠	1.75	1.55
蒜尾	1.38	1.55
蔥白	1.00	1.25
蔥綠	0.88	1.05
蔥頭	1.25	1.38

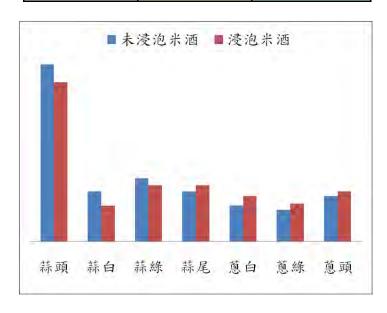


圖 5-4 浸泡米酒後之蔥蒜濾液與碘液滴定用量關係圖

由(圖四)可知:

- 1. 蒜白、蒜綠與蒜頭之抗氧化力皆在浸泡過米酒後有變差的趨勢。
- 2. 蔥白、蔥綠、蔥頭與蒜尾的抗氧化力經過米酒浸泡後有變強的趨勢。

實驗五:發芽對蒜頭抗氧化利影響之研究

(一) 實驗結果:

表 5-5 發芽與未發芽蒜頭之滴定

類別	碘液體積(mL)	
蒜頭	4.88	
發芽蒜頭	4.63	

(二)實驗結果討論:

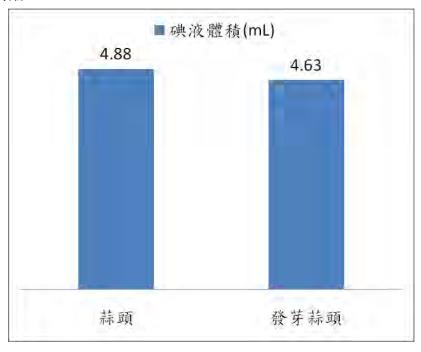


圖 5-5 發芽與未發芽蒜頭濾液與碘液滴定用量關係圖

由(圖五)可知:

1. 發芽的蒜頭其抗氧化力有減少的趨勢,但僅是些微改變,<mark>大致上蒜頭仍保有其極佳之抗</mark> 氧化力。

柒、結論

- 1. 不同部位之蔥、蒜皆會影響其抗氧化力。在蔥的部分以**蔥頭**的抗氧化力**較佳**,蒜的部分 則以**蒜綠**的抗氧化力**最強**。而蒜頭的抗氧化力則明顯高於其他部位。
- 2. 蔥蒜及蒜頭之抗氧化力會受到溫度的影響,蒜頭、蒜白與蒜綠適宜以常溫處理;蔥白、 蔥頭與蔥綠則適宜低溫冷藏,另外溫度對蒜尾則無明顯之影響。
- 3. 浸泡米酒會影響蔥蒜及蒜頭之抗氧化力,其中蔥白、蔥綠、蔥頭與蒜尾的抗氧化力經**米 酒浸泡後增強的趨勢**,故在料理此些部位時可斟酌使用米酒。
- 4. 蒜頭的發芽與否對其抗氧化力所造成的影響不大。

捌、參考資料

- 1. 吳青航、林兌蓴、鄭宇玲,聞起來越臭吃起來越健康一蒜頭的奧妙。
- 2. 郭浚佑、林順進,蒜與自由基。
- 3. 陳威翰、蘇煥鈞、周傳益,我是「地」一名—地瓜葉抗氧化力之探討,中華民國第 50 屆 科選展覽會參展作品集。
- 4. http://www.hljh.tcc.edu.tw/teach/%E6%A0%A1%E5%9C%92%E6%A4%8D%E7%89%A9/%E8%92%9C.htm

【評語】080213

- 1. 利用食材檢驗蔥蒜之抗氧化能力,有其創意性。
- 實驗若能以定量小蘇打粉改變蒜頭不同量測其抗氧力,更能證明蒜頭之抗氧效果。
- 3. 應指明實驗材料種類,如三星蔥土產物或進口物等,避 免過度推論。