附件一之一:延續性研究作品說明表

- 一、參賽作品為延續已發表過之研究內容再進行延伸研究者,須檢附此說明 表【須一併檢附最近一次已參賽研究作品書面資料】。
- 二、新增內容起始日為參加本競賽前一年內之研究作品,評審委員亦以此範圍進行審查。

學生姓名: 張秉洋、陳泰元 就讀學校:自強國中

作品名稱: 黑白大逆轉-棋盤變色破解與程式製作

之前研究作品參賽年(屆)次/作品名稱/參賽名稱/獲獎紀錄(相關參賽紀錄請逐一列出

參賽年(屆)次: 65屆 參賽名稱:花蓮縣科展

作品名稱:黑白大逆轉:棋盤變色任務

獲獎紀錄:佳作

參賽年(屆)次:

參賽名稱: 作品名稱: 獲獎紀錄:

參賽年(屆)次:

參賽名稱: 作品名稱: 獲獎紀錄:

參賽年(屆)次:

參賽名稱: 作品名稱: 獲獎紀錄:

備註:1.校內競賽不需填寫。

2.参賽作品不是延續已發表過的作品,附件一之一可以不用繳交。

3.填妥後請掃描為 PDF 檔上傳(不需郵寄,請參賽隊伍自行留存)。

三、請依下列各項,列出此次參賽之作品內容,與先前已完成之研究作品不同之處。

更新項目確認 (請勾選)	項目	本次參賽作品之更新要點 (有勾選之項目需於此欄說明)
	題目	原研究僅探討原題是否有解、解的情況與總步數的上下界區間/此次延伸的方向為:透過科展做出的成果,製作此遊戲的遊玩程式與可以生成出按法解答的破解版程式。
	摘要	透過變化的規則與先前研究,延伸至任意 棋盤以及遊戲程式、破解程式。
	前言 (含研究動機、目的)	目的改為透過先前的研究結果,發展出原 提情境的任意棋盤程式,並製作破解版的 解答程式。
	研究方法或過程	以先前研究結果,先嘗試以數字的形式做 出程式,再將數字的顯示轉化為顏色顯 示;接著製作解答之程式。
	結論與應用	將研究的結果轉型成程式,活用先前的經 驗把結論轉化為更具體的遊戲,更容易讓 人理解。
	參考文獻	新增python程式語言的閱讀,以及運用AI 協助程式撰寫的介紹。
	其他更新	

附件:

□最近一次已參賽研究作品說明書及海報(114 年)

作者本人及指導教師皆確認據實填寫上述各項內容,並僅將一年內的後續研 究內容發表於書面資料,以前年度之研究內容已攘實列為參考資料,並明顯 標示。

型學生簽名 發棄洋、[P東东 回指導教師簽名 吕柏 后、[P東京]

日期:20%,(0,0)

日期: 2025、10、10/

花蓮縣第 65 屆國民中小學科學展覽會 作品說明書

科 别:數學科

組 别:國中組

作品名稱:黑白大逆轉:棋盤變色任務!

關 鍵 詞:變色棋盤、最小步數、同餘運算

編 號:

摘要

本作品主要為國立台灣科學教育館科學月刊之第63卷第6期的森棚教官數學題-三段變速之豬羊變色的延伸,主要在探討不同田字型的變色在各種正方形棋盤下的解,首先解決原情境的問題,接著再將其向外推廣,利用 excel 軟體模擬(1,n)變色時的最小步數,以及拓展討論(p,n)變色中的有解情況。

壹、 研究動機

本作品之原題出自國立台灣科學教育館科學研習之第 63 卷第 6 期的森棚教官數學題-三段變速之豬羊變色,原題如下:

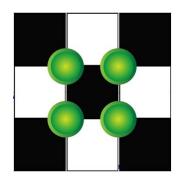
小佟正在電腦上玩小遊戲,這個小遊戲是這樣玩的:一開始螢幕上有一個 n×n的棋盤,格子用黑色與白色塗成西洋棋盤的樣式,其中左上角那一格是黑 色的。

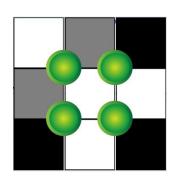
每一次玩家可以用滑鼠選一個2×2的田字形,然後按下滑鼠,被選中的田字形中的格子,

- 1. 如果是白色,就會變成灰色。
- 2. 如果是灰色,就會變成黑色。
- 3. 如果是黑色,就會變成白色。

遊戲的目的是讓棋盤一樣用黑白兩色塗成西洋棋盤的格式,但是左上角那一格是白色的(也就是說與一開始的顏色互換),請你幫幫小佟完成3×3、4×4、5×5的遊戲。

我們原本先使用 Scratch 程式軟體將其變為一個實體的遊戲,實驗的過程中透過按下田字型 方格正中間來變色,我們使用了綠色按鈕來控制方格變色,若按下其中一個按鈕,其周圍四 個方格將變為下一種顏色,如下圖,作品中的所有圖片皆為作者自行製作。





貳、 研究目的

- 一、找出(1,2)變色在3×3、4×4以及5×5棋盤的解
- 二、找出(1,n)變色中的有解棋盤,與在 $(n+1) \times (n+1)$ 棋盤的解
- 三、找出(1,n)變色中最小步數的上下界
- 四、找出(p,n)變色中的有解棋盤,與在 $(n+p) \times (n+p)$ 棋盤的解

參、 研究設備及器材

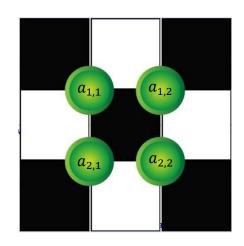
一、白紙、筆、電腦、程式軟體(scratch、Excel)及文書軟體(PowerPoint、Word)

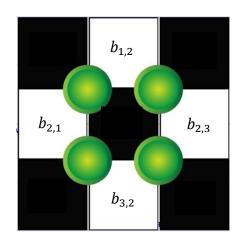
肆、 研究過程與方法

一、定義名詞:

(一)定義棋盤方格位置與按鈕的次數

若方格位在棋盤中的第h列第k行,我們將其位置用 $b_{h,k}$ 表示,根據按鈕位置的不同,我們將後續研究中,所需位置按鈕按下的次數記為 $a_{n,m}$,如下圖。





(二)定義(i,j)變色

考慮原題中最終須將黑白互換,且遊戲規則為黑變白需按1次,白變黑需按2次,我們用序對(1,2)』表示,之後若遊戲規則變為黑變白需i次,白變黑需j次,則用序對(i,j)表示,定義為(i,j)變色。

(三)同餘的定義:

由於在變色的過程中,黑變白,白變灰,灰變黑,因此一個按鈕按下三下後會將田字型回復原狀,也就是若其中一個解須將按鈕按下t下,則將按鈕按下t+3k下仍為其解,與同餘的概念相同,說明如下:對某兩個整數 $a \cdot b$,若它們除以正整數m所得的餘數相等,則稱 $a \cdot b$ 對於模m同餘。嚴格來說,就是若存在整數r使得a-b=rm,則稱 $a \cdot b$ 對於除數m是同餘的,一般記做 $a \equiv b \pmod{mod m}$,以下為一些同餘的基本運算性質:

- 3. 若 $a \equiv b \pmod{m}$ 且 $b \equiv c \pmod{m}$,則 $a \equiv c \pmod{m}$
- 4. 若 $a \equiv b \pmod{m}$ 且 $c \equiv d \pmod{m}$,則 $a \pm c \equiv b \pm d \pmod{m}$
- 5. 若 $a \equiv b \pmod{m}$ 且 $c \equiv d \pmod{m}$,則 $ac \equiv bd \pmod{m}$

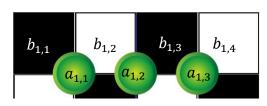
二、討論(1,2)變色的情況:

(一) 觀察(1,2)變色在 3×3棋盤的解:

根據規則,方塊的顏色變換為黑變白、白變灰、灰變黑,可知當按鈕被按下三次時,顏色會回到原位。因此我們只需要討論mod3 (除以3的餘數狀況)後的數字即可。

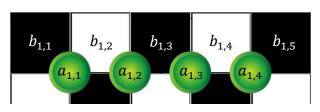
- 1. 我們觀察到方格 $b_{1,1}$ 需從黑色變為白色,且 $b_{1,1}$ 僅受按鈕 $a_{1,1}$ 影響而變色,已知黑色若要變為白色其周圍按鈕需一共被按下1(mod3)次,故 $a_{1,1}\equiv 1(mod3)$
- 2. 同 1,可知方格 $b_{1,3}$ 、 $b_{3,1}$ 、 $b_{3,3}$ 皆需從黑變白,且分別僅受按鈕 $a_{1,2}$ 、 $a_{2,1}$ 、 $a_{2,2}$ 影響,因此 $a_{1,1}\equiv a_{1,2}\equiv a_{2,1}\equiv a_{2,2}\equiv 1 (mod 3)$
- 3. 接著需檢驗剩下方格變色的狀況,其中方格 $b_{1,2}$ 隨接鈕 $a_{1,1}$ 和 $a_{1,2}$ 變色,且已知接鈕 $a_{1,1}\equiv a_{1,2}\equiv 1 (mod3)$,根據同餘的運算,方格 $b_{1,2}$ 一共被按了 $a_{1,1}+a_{1,2}\equiv 2 (mod3)$ 次,因此成功由原本的白色變為黑色。
- 同3,可發現方格b_{2,1}、b_{2,3}、b_{3,2}皆被按下2(mod3)次,所以都成功由原本的白色變為黑色。
- 5. 最後檢驗最中間的方格 $b_{2,2}$,可發現 $b_{2,2}$ 隨按鈕 $a_{1,1}$ 、 $a_{1,2}$ 、 $a_{2,1}$ 、 $a_{2,2}$ 變色,且已知 $a_{1,1}\equiv a_{1,2}\equiv a_{2,1}\equiv a_{2,2}\equiv 1 (mod 3) , 因此<math>b_{2,2}$ 一共被按下 $a_{1,1}+a_{1,2}+a_{2,1}+a_{2,2}\equiv 4\equiv 1 (mod 3)$ 次,成功使 $b_{2,2}$ 由原本得黑色變為白色。

- 6. 前五個步驟成功使所有格子黑白顛倒,代表在3×3的情況下是有解的。且不難發現,對每個按鈕都按一下是達成目標狀況的最小步數。因此(1,2)變色在3×3中的最小步數為4步。
- (二) 觀察(1,2)變色在 4×4棋盤的解:



由於 4×4 的討論較為複雜,因此我們將其簡化,先討論第一列的情況(如上圖所示),可以觀察到僅有按鈕 $a_{1,1} \times a_{1,2} \times a_{1,3}$ 能控制第一列的變色情形,因此若我們無法透過按鈕 $a_{1,1} \times a_{1,2} \times a_{1,3}$ 將第一列方格成功變色,即代表此種情況無解。

- 1. 同 3×3 ,需使 $b_{1,1}$ 方格顏色由黑變為白,因此按鈕 $a_{1,1} \equiv 1 (mod3)$;需使 $b_{1,4}$ 方格顏色由白變為黑,因此按鈕 $a_{1,3} \equiv 2 (mod3)$ 。
- 2. 已知 $a_{1,1} \equiv 1 \pmod{3}$,又方格 $b_{1,2}$ 僅隨按鈕 $a_{1,1} \cdot a_{1,2}$ 變色,且方格 $b_{1,2}$ 需變為黑色,則需按下其周圍按鈕 $2 \pmod{3}$ 下,則根據同餘之運算,得 $a_{1,2} \equiv 2 a_{1,1} \equiv 2 1 \equiv 1 \pmod{3}$ 。
- 3. 已知 $a_{1,3}\equiv 2 (mod3)$,又方格 $b_{1,3}$ 僅隨按鈕 $a_{1,2}$ 、 $a_{1,3}$ 變色,且方格 $b_{1,3}$ 需變為白色, 則需按下其周圍按鈕1 (mod3)下,則根據同餘之運算,得 $a_{1,2}\equiv 1-a_{1,3}\equiv 1-2\equiv -1\equiv 2 (mod3)$ 。
- 4. 由 2、3 得知,若第一列方格皆已成功變色,可得 $a_{1,2} \equiv 1 \pmod{3}$ 且 $a_{1,2} \equiv 2 \pmod{3}$,產生矛盾(→←),因此(1,2)變色在 4×4 時無解。
- (三) 觀察(1,2)變色在5×5棋盤的解:



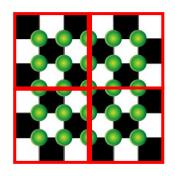
- 1. 同 4×4 ,需使 $b_{1,1}$ 方格顏色由黑變為白,因此按鈕 $a_{1,1} \equiv 1 (mod3)$;需使 $b_{1,5}$ 方格顏色由白變為黑,因此按鈕 $a_{1,4} \equiv 1 (mod3)$ 。
- 2. 已知 $a_{1,1} \equiv 1 \pmod{3}$,又方格 $b_{1,2}$ 僅隨按鈕 $a_{1,1} \cdot a_{1,2}$ 變色,且方格 $b_{1,2}$ 需變為黑色,

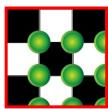
則需按下其周圍按鈕2(mod3)下,則根據同餘之運算,得 $a_{1,2}\equiv 2-a_{1,1}\equiv 2-1\equiv 1(mod3)$ 。已知 $a_{1,4}\equiv 1(mod3)$,又方格 $b_{1,4}$ 僅隨按鈕 $a_{1,3}$ 、 $a_{1,4}$ 變色,且方格 $b_{1,4}$ 需變為黑色,則需按下其周圍按鈕2(mod3)下,則根據同餘之運算,得 $a_{1,3}\equiv 2-a_{1,4}\equiv 2-1\equiv 1(mod3)$ 。

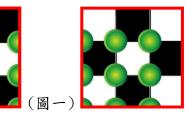
- 3. 已知 $a_{1,2} \equiv 1 \pmod{3}$,又方格 $b_{1,3}$ 僅隨接鈕 $a_{1,2} \cdot a_{1,3}$ 變色,且方格 $b_{1,3}$ 需變為白色,則需按下其周圍按鈕 $1 \pmod{3}$ 下,則根據同餘之運算,得 $a_{1,3} \equiv 1 a_{1,1} \equiv 1 1 \equiv 0 \pmod{3}$ 。
- 4. 由 3、4 得知,若第一列方格皆已成功變色,可得 a_{1,3} ≡ 1(mod3) 且 a_{1,3} ≡ 0(mod3),產生矛盾(→←),因此(1,2)變色在5×5 時無解。

(四)觀察(1,2)變色在6×6棋盤的解:

1. 如圖,我們將6×6視為兩個右上角為黑色(左上、右下)及兩個右上角為白色(右上、左下)的3×3圖形:





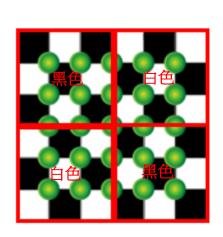


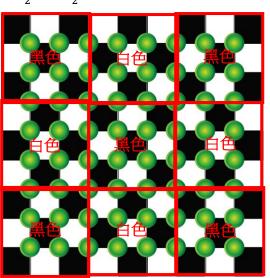
(圖二)

- 2. 左上角為黑色之3×3棋盤(圖一)與先前已證明之3×3棋盤相同,僅需將其中四個按鈕各按下1(mod3)次即可。而左上角為白色之3×3棋盤(圖二),則可視為已完成的狀態,需還原回左上角為黑色之3×3棋盤。且已知同個按鈕若被按下0(mod3)次,則周圍之方格會回復為原來的狀態,因此根據同餘之運算可得,只要將左上角為白色之3×3棋盤的四個按鈕按下0-1 ≡ -1 ≡ 2(mod3)次即可(其餘被切割之按鈕則按下0(mod3)下)
- 3. 我們發現,在(1,2)變色的情況下,3×3棋盤有解,但4×4、5×5棋盤無解,而 6×6棋盤亦有解。所以我們推測,(1,2)變色只有在3k×3k棋盤有解。

(五) 歸納(1,2)變色在 $3k \times 3k$ 棋盤的解:

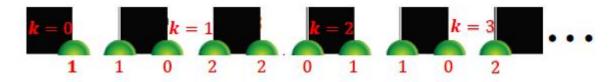
- 1. $3k \times 3k = k^2(3 \times 3)$,故我們可將其視為 k^2 個 3×3 棋盤(分為左上角為黑色與左上角為白色的 3×3 棋盤),而兩種不同的 3×3 棋盤皆有解,因此 $3k \times 3k$ 棋盤必有解,接著我們將說明其最小步數。
- 2. 我們發現,當 $3k \times 3k$ 的k為偶數時(如圖 6×6)左上角為黑色的 3×3 棋盤之數量會和左上角為白色的 3×3 棋盤之數量相同,皆有 $\frac{k^2}{2}$ 個;當k為奇數時(如圖 9×9),左上角為黑色的 3×3 棋盤之數量和左上角為白色的棋盤之數量分別是 $\frac{k^2+1}{2}$ 與 $\frac{k^2-1}{2}$ 個,則可知黑色的 3×3 棋盤之數量比白色的 3×3 棋盤之數量比白色的



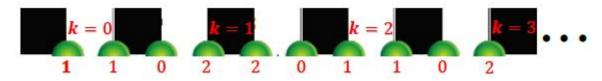


- 3. 已知在 $3k \times 3k$ 圖形中,當k為偶數時,左上角為黑色的 3×3 棋盤和左上角為白色的 3×3 棋盤皆有 $\frac{k^2}{2}$ 個,則其最小步數為 $4 \times \frac{k^2}{2} + 8 \times \frac{k^2}{2} = 6k^2$ (4為左上角為黑色之 3×3 棋盤的步數,8則為左上角白色之 3×3 棋盤的步數);又k為奇數時,左上角 為黑色之 3×3 棋盤和左上角為白色之棋盤的數量分別有 $\frac{k^2+1}{2}$ 與 $\frac{k^2-1}{2}$,則其最小步數 為 $4 \times \frac{k^2+1}{2} + 8 \times \frac{k^2-1}{2} = 6k^2 2$ 。
- (六)(1,2)變色在 $(3k+1) \times (3k+1)$ 棋盤無解說明:
 - 1. 下圖為 $(3k+1) \times (3k+1)$ 簡化後的圖形,我們發現,由左到右的按鈕按下次數依序 為 $1 \times 1 \times 0 \times 2 \times 2 \times 0 \pmod{3}$ 並無限循環下去,且當停在3k+1時,方格 $b_{1,3k+1}$ 周圍 之按鈕將只會被按下 $0 \pmod{3}$ 次,則其無法成功變色(因能影響到其之按鈕將為上述

發現之規律的第3個或第6個,且其按下次數皆為 $0 \pmod{3}$,則其不會變色,無法變為原色外的其他顏色),故可知(1,2)變色在 $(3k+1) \times (3k+1)$ 棋盤無解。



- (+)(1,2)變色在 $(3k+2) \times (3k+2)$ 棋盤無解說明:
 - 1. 下圖為 $(3k+2) \times (3k+2)$ 簡化後的圖形,同(六) ,可發現 $b_{1,3k+2}$ 周圍按鈕按下次數可能為1(mod3)或2(mod3),在k為奇數與偶數時有不同的情況:當k為奇數時,其周圍按鈕按下次數為2(mod3)次,且 $b_{1,3k+2}$ 的原始樣貌為黑色,因此會使其從黑色變為灰色,無法成功變色,故 $(3k+2) \times (3k+2)$ 在k為奇數時無解;而當k為偶數時,其周圍按鈕按下次數將為1(mod3),且 $b_{1,3k+2}$ 的原始樣貌為白色,因此會使其從白色變為灰色,則其無法成功變色,故 $(3k+2) \times (3k+2)$ 在k為偶數時亦無解。因此可知(1,2)變色在 $(3k+2) \times (3k+2)$ 棋盤無解。



(八)小結:

- 1. (1,2)變色在3×3棋盤中的最小解為4
- 2. (1,2)變色僅在3k×3k棋盤中有解,且最小步數為

$$\begin{cases} 6k^2 & , k = 2m \\ 6k^2 - 2 & , k = 2m + 1 \end{cases}$$
 (其中 $m \cdot k$ 為正整數)

三、討論(1,3)變色的情況:

- (一)觀察(1,3)變色在 3×3棋盤的解:
 - 可知b_{1,1}需由黑變為白,因此a_{1,1} ≡ 1(mod4),此時為滿足b_{1,2}由白變為黑,即b_{1,2}周 圍按鈕共按3(mod4),則a_{1,2} ≡ 3 − a_{1,1} ≡ 3 − 1 ≡ 2(mod4)。而若要讓b_{1,3}由黑變為 白,則a_{1,2} ≡ 1(mod4),產生矛盾(→←),因此(1,2)變色在3×3時無解。
- (二)觀察(1,3)變色在 4×4棋盤的解:
 - 1. 可知 $b_{1,1}$ 需由黑變為白,因此 $a_{1,1} \equiv 1 (mod 4)$,此時為滿足 $b_{1,2}$ 由白變為黑,即 $b_{1,2}$

周圍按鈕共按3(mod4),則 $a_{1,2} \equiv 3 - a_{1,1} \equiv 3 - 1 \equiv 2(mod4)$,又 $b_{1,3}$ 須由黑變白,則 $a_{1,2} + a_{1,3} \equiv 1$,則 $a_{1,3} \equiv 1 - a_{1,2} \equiv 1 - 2 \equiv -1 \equiv 3(mod4)$,最後,檢查 $b_{1,4}$ 由白變黑,則 $a_{1,3} \equiv 3$,無矛盾產生,則 4×4 棋盤的第一排有解。

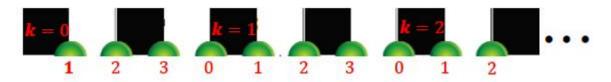
- 2. $b_{2,1}$ 需由白變為黑,則 $a_{2,1}\equiv 3-a_{1,1}\equiv 3-1\equiv 2$,此時為滿足 $b_{2,2}$ 由黑變為白,則 $a_{1,1}+a_{1,2}+a_{2,1}+a_{2,2}\equiv 1$,則 $a_{2,2}\equiv 1-a_{1,1}-a_{1,2}-a_{2,1}\equiv 1-1-2-2\equiv -4\equiv 0 (mod4)$ 。又 $b_{2,3}$ 由白變為黑,則 $a_{1,2}+a_{1,3}+a_{2,2}+a_{2,3}\equiv 3$,故 $a_{2,3}\equiv 3-a_{1,2}-a_{1,3}-a_{2,2}\equiv 3-2-3-0\equiv -2\equiv 2 (mod4)$ 。最後,檢查 $b_{2,4}$ 是否由黑變為白,則 $a_{2,3}\equiv 1-a_{1,3}\equiv 1-3\equiv -2\equiv 2 (mod4)$,無矛盾產生,因此 4×4 棋盤的上方二排有解。
- 3. $b_{3,1}$ 需由黑變為白,則 $a_{3,1} \equiv 1 a_{2,1} \equiv 1 2 \equiv -1 \equiv 3 \pmod{4}$,此時為滿足 $b_{3,2}$ 由白變為黑,則 $a_{2,1} + a_{2,2} + a_{3,1} + a_{3,2} \equiv 3$,則 $a_{3,2} \equiv 3 a_{2,1} a_{3,1} a_{2,2} \equiv 3 2 3 0 \equiv -2 \equiv 2 \pmod{4}$ 。又 $b_{3,3}$ 需由黑變為白,則 $a_{2,2} + a_{2,3} + a_{3,2} + a_{3,3} \equiv 1$,故 $a_{3,3} \equiv 1 a_{2,2} a_{2,3} a_{3,2} \equiv 1 0 2 2 \equiv -3 \equiv 1 \pmod{4}$ 。最後,檢查 $b_{3,4}$ 由白變黑,則 $a_{3,3} \equiv 1 \pmod{4}$,無矛盾產生,因此 4×4 棋盤的上方三排有解。
- 4. 最後需檢驗剩下方格變色的狀況,其中方格 $b_{4,1}$ 隨按鈕 $a_{3,1}$ 變色,且已知按鈕 $a_{3,1}$ \equiv 3(mod4),因此成功使 $b_{4,1}$ 由白色變為黑色。方格 $b_{4,2}$ 隨按鈕 $a_{3,1}$ 、 $a_{3,2}$ 變色,根據同餘的運算,方格 $b_{4,2}$ 一共被按了 $a_{3,1}+a_{3,2}\equiv 3+2\equiv 5\equiv 1(mod4)$ 次,因此成功由原本的白色變為黑色。同理,方格 $b_{4,3}$ 隨按鈕 $a_{3,2}$ 、 $a_{3,3}$ 變色,故方格 $b_{4,3}$ 一共被按了 $a_{3,2}+a_{3,3}\equiv 2+1\equiv 3(mod4)$ 次,成功由原本的白色變為黑色。而方格 $b_{4,4}$ 僅隨按鈕 $a_{3,3}$ 變色,已知 $a_{3,3}\equiv 1$,因此方格 $b_{4,4}$ 也成功由黑色變為白色。
- 5. 前述說明成功使所有格子黑白顛倒,代表(1,3)變色在 4×4 棋盤是有解的。且由於 $a_{1,1} \cdot a_{1,2} \cdot a_{1,3} \cdot a_{2,1} \cdot a_{2,2} \cdot a_{2,3} \cdot a_{3,1} \cdot a_{3,2} \cdot a_{3,3}$ 皆是除以4的餘數,因此可知最 小步數為 $a_{1,1} + a_{1,2} + a_{1,3} + a_{2,1} + a_{2,2} + a_{2,3} + a_{3,1} + a_{3,2} + a_{3,3} = 16$ 。

(三)說明(1,3)變色在4k×4k棋盤的解:

1. $4k \times 4k = k^2(4 \times 4)$,故我們可將其視為 k^2 個 (4×4) 棋盤(皆是左上角為黑色的 4×4 棋盤),前述已證明 4×4 棋盤有解,因此可知(1,3)變色在 $4k \times 4k$ 棋盤中有解,接著我們將說明其最小步數。

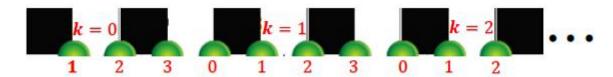
- 2. 已知 $4k \times 4k$ 棋盤可視為 k^2 個 (4×4) 棋盤,且前述已證明 4×4 棋盤的最小步數為16,因此 $4k \times 4k$ 棋盤的最小步數為 $16k^2$ 。
- (四)(1,3)變色在 $(4k+1) \times (4k+1)$ 棋盤下無解說明

下圖為(4k+1)×(4k+1)棋盤簡化後的圖形,我們發現由左到右的按鈕按下次數依序為 $1\cdot 2\cdot 3\cdot 0 (mod4)$ 並無限循環下去,因此若圖形停在 $b_{1,4k+1}$,周圍之按鈕將只會被按下0 (mod4)次,又 $b_{1,4k+1}$ 原為黑色,需按1 (mod4)下才可變為白色,故其無法成功變色,即(1,3)變色在(4k+1)×(4k+1)棋盤無解。



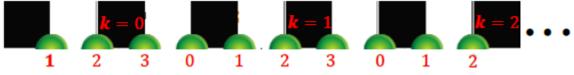
(五)(1,3)變色在 $(4k+2) \times (4k+2)$ 棋盤無解說明

下圖為(4k+2)×(4k+2)棋盤簡化後的圖形,同(四),若圖形停在 $b_{1,4k+2}$,周圍之按鈕將只會被按下1(mod4)次,又 $b_{1,4k+2}$ 原為白色,需按3(mod4)下才可變為黑色,故其無法成功變色,即(1,3)變色在(4k+2)×(4k+2)棋盤無解。



(六)(1,3)變色在(4k+3)×(4k+3)棋盤無解說明

下圖為(4k+3)×(4k+3)棋盤簡化後的圖形,同(四),若圖形停在 $b_{1,4k+3}$,周圍之按鈕將只會被按下2(mod4)次,又 $b_{1,4k+3}$ 原為黑色,需按1(mod4)下才可變為白色,故其無法成功變色,即(1,3)變色在(4k+3)×(4k+3)棋盤無解。



(七)小結:

- 1. (1,3)變色在4×4棋盤中的最小解為16
- 2. (1,3)變色僅在 $4k \times 4k$ 棋盤中有解,且最小解為 $16k^2$

結論:根據(1,2)變色與(1,3)變色的討論,我們發現(1,n)變色僅在n+1的倍數棋盤中有解,且在小於n+1的棋盤中皆無解,我們會在以下進行說明。

五、說明(1,n)變色在不同棋盤中解的情況

(-) $t \times t$ 棋盤(其中 0 < t < n+1)無解

1. t為偶數的狀況

當 t 為偶數,第 t 格為白色方格,且其周圍的按鈕將被按下t-1下。但在(1,n)變色時,白色方格需按下 $n(mod\ n+1)$ 次才會變為黑色,因此 $t-1=n \to t=n+1$,已知t< n+1,出現矛盾 $(\to \leftarrow)$,故(1,n)變色在 $t \times t$ 棋盤(t < n+1,t為偶數)無解。

2. t為奇數的狀況

當 t 為奇數,第 t 格為黑色方格,且其周圍的按鈕將被按下n-t+2下。但在(1,n)變色時,黑色方格需按下 $1 \pmod{n+1}$ 次才會變為黑色,因此 $n-t+2=1 \to t=n+1$,已知t < n+1,出現矛盾 $(\to \leftarrow)$,故(1,n)變色在 $t \times t$ 棋盤(t < n+1,t為奇數)無解。

3. 根據前述說明,可知(1,n)變色在 $t \times t$ 棋盤(其中 0 < t < n+1)無解。

(二)(1,n)變色在 $(n+1) \times (n+1)$ 棋盤的解

1. 為了驗證(1,n)變色在 (n+1)×(n+1)棋盤中有解,我們先試著窮舉了n=1~10的 狀況,且為了方便觀察,我們將表格定為**按鈕須按下的次數**,如下表。下表即為(1,2) 變色在3×3棋盤中的按法,四個位置表示3×3棋盤中間的四個按鈕。且其中的所有按 法次數皆為除以n+1的餘數,因此可知窮舉的按法為最小步數,我們將其加總即為該 變色按法的最小步數。

(1,2)變色在3×3棋盤的按法,最小步數=4					
$a_{1,1} = 1$	$a_{1,2} = 1$				
$a_{2,1} = 1$ $a_{2,2} = 1$					

窮舉(1,n)變色在 $(n+1) \times (n+1)$ 棋盤的解(n=2~8), 並整理最小步數。

(1,2)變色,	最小步數=4
1	1
1	1

(1,3)變色,最小步數=16						
1	2	3				
2	0	2				
3	2	1				

(1,4)變色,最小步數=44					
1	3	3	1		
3	4	4	3		
3	4	4	3		
1	3	3	1		

(1,5)變色,最小步數=63						
1	1 4 3 2					
4	4	0	2	2		
3	0	3	0	3		
2	2	0	4	4		
5	2	3	4	1		

(1,6)變色,最小步數=100							
		(1,0)%	芝巴 ,取小莎	数=100			
1	5	3		3	5	1	
5	4	1		1	4	5	
3	1	2		2	1	3	
3	1	2		2	1	3	
5	4	1		1	4	5	
1	5	3		3	5	1	
		(1,7)	變色,最小步	數=176			
1	6	3	4	5	2	7	
6	4	2	0	6	4	2	
3	2	1	4	7	6	5	
4	0	4	0	4	0	4	
5	6	7	4	1	2	3	
2	4	6	0	2	4	6	
7	2	5	4	3	6	1	

	(1,8)變色,最小步數=304							
1	7	3	5	5	3	7	1	
7	4	3	8	8	3	4	7	
3	3	0	6	6	0	3	3	
5	8	6	7	7	6	8	5	
5	8	6	7	7	6	8	5	
3	3	0	6	6	0	3	3	
7	4	3	8	8	3	4	7	
1	7	3	5	5	3	7	1	

2. (1,n)變色在 $(n+1) \times (n+1)$ 棋盤的按法規律發現:

我們在窮舉的過程中發現,由於棋盤的本身的對稱性很強,因此在找最小步數按法的解時,也可以利用對稱性來簡化,以下為最小步數按法的對稱情況說明:

(1)若以按鈕圖形最中心的點為對稱點,則將上下棋盤旋轉 180° 會變為相同圖形,即最小步數按法會是點對稱圖形,因此如果一個棋盤的上半部分有解,這個棋盤必有解。如下圖,若n=5,最小按法會是以 $a_{3,3}$ 為對稱中心的點對稱圖形;若n=6,最小按法會是以 $b_{4,4}$ 為對稱中心的點對稱圖形。

(1,5)變色 63						
1	4	2	5			
4	4	0	2	2		
3	0	3	0	3		
2	2	0	4	4		
5	2	3	4	1		

(1,6)變色 100							
1	5	3	3	5	1		
5	4	1	1	4	5		
3	1	2	2	1	3		
3	1	2	2	1	3		
5	4	1	1	4	5		
1	5	3	3	5	1		

(2)除了(1)中提到到點對稱性質外,也可發現當n為偶數時,最小步數的按法亦會是線對稱圖形,其對稱軸為過中心的鉛垂線與水平線(下圖為n=6的情形)因此僅須找出其左上角 $(圖形的\frac{1}{4})$ 即可。

	(1,6)變色 100							
1	5	3	3	5	1			
5	4	1	1	4	5			
3	1	2	2	1	3			
3	1	2	2	1	3			
5	4	1	1	4	5			
1	5	3	3	5	1			

(3)根據(1)、(2)的情況,簡化為原圖形的一半後,我們可過圖形中心做垂直線與水平線將圖形分為四分之一。此外,可知棋盤的第一排、第一列方格順序相同,第二排與第二列的方格亦相同,所以它的按下次數也將以對角線為對稱軸對稱。因此可將圖形再沿著其對角線分為一半,按下次數也將對稱(註:若有按鈕恰好在線上,仍要計算)。故當n為偶數時,僅需須找出其 $\frac{1}{8}$ 部分的解(下圖為n=6的情形),n為奇數時,則須找出

其 $\frac{1}{4}$ 部分的解(下圖為n=5的情形),剩餘情況只需以線對稱的特徵推導即可。

	(1,6)變色 100							
	5	3	3	5	1			
5		1	1	4	5			
3	1	2	2	1	3			
3	1	2	2	1	3			
5	4	1	1	¥	5			
1	5	3	3	5	*			

	(1,5)變色 63					
1	4	3	2	3		
4	4	0	1	2		
3	0	X	0	3		
2	7	0	A	4		
-	2	3	4	4		

(4)繼續討論下去我們發現,若將負數納入考量,則第一列的按鈕會有以下的規律: $a_{1,n}\equiv (-1)^n\times n (mod\ n+1)$,說明如下:我們令起始條件的黑格為-1,白格為1,此時若周圍按鈕能使其數字加總變為 $0 (mod\ n+1)$,則可使其成功變色。因 $b_{1,1}$ 為黑色,則 $b_{1,1}+a_{1,1}\equiv -1+a_{1,1}\equiv 0$,可得 $a_{1,1}\equiv 1 (mod\ n+1)$; $b_{1,2}$ 為白色,則 $b_{1,2}+a_{1,1}+a_{1,2}\equiv 0$,可得 $a_{1,2}\equiv -2 (mod\ n+1)$,依此類推 $a_{1,3}\equiv 3$, $a_{1,4}\equiv -4\cdots$ 。又由(3)的對稱關係可知,第一行也會是相同的狀況。

(5)根據(4)繼續向下推導,最後我們找到了(1,n)變色在(n+1)×(n+1)的解,如下表所示(下表為(1,n)變色在(n+1)×(n+1)棋盤的情況)。除第一列、第一行外,中間的每個數字都會等於其首列及首行相乘,即 $a_{m,l}\equiv a_{m,1}\times a_{1,l}$,無論是模多少;其邏輯與(4)相似,因 $a_{1,1}$ 和 $a_{2,1}$ 共同控制 $b_{2,1}$ (白色)的變色,則 $a_{1,1}+a_{2,1}\equiv -1$,又 $a_{1,1}\cdot a_{2,1}\cdot a_{1,2}\cdot a_{2,2}$ 四個按鈕共同控制 $b_{2,2}$ (黑色)的變色,且已知 $a_{1,1}+a_{2,1}\equiv -1$,得 $a_{1,2}+a_{2,2}\equiv (-2)\times (-1)\equiv 2$ 。以此類推,已知 $a_{1,2}\equiv 1\times -2$,則 $a_{2,2}\equiv (-1)\times (-2)-1\times (-2)\equiv (-2)\times (-2)\equiv 4$;因 $a_{2,1}$ 和 $a_{3,1}$ 共同控制 $b_{3,1}$ (黑色)的變色,則 $a_{2,1}+a_{3,1}\equiv 1$,又 $a_{2,1}\cdot a_{3,1}\cdot a_{2,2}\cdot a_{3,2}$ 四個按鈕共同控制 $a_{3,2}$ (白色)的變色,因此 $a_{2,2}+a_{3,2}\equiv (-2)\times 1\equiv -2$,故 $a_{1,3}\equiv (-2)\times (-2)$,得 $a_{3,2}\equiv 1\times (-2)-(-2)\times (-2)\equiv (-2)\times 3\equiv -6$,又依(3)可知 $a_{2,3}\equiv a_{3,2}\equiv -6$;因 $a_{2,2}+a_{3,2}\equiv -2$,且 $a_{2,2}\cdot a_{3,2}\cdot a_{2,3}\cdot a_{3,3}$ 四個按鈕共同控制 $a_{3,3}$ (黑色)的變色,因此 $a_{2,2}+a_{3,2}\equiv 3\times 1\equiv 3$,又 $a_{1,3}\equiv (-2)\times 3$,得 $a_{3,2}\equiv 3\times 1= (-2)\times 3\equiv 3\times 3\equiv 9\cdots$

$a_{1,1} \equiv 1$	$a_{1,2} \equiv -2$	$a_{1,2} \equiv 3$	$a_{1,4} \equiv -4$	$a_{1.5} \equiv 5$		$a_{1,n}$
W _{1,1} = 2	W _{1,2} — =	W1,3 — S	1,4	W1,5 — 5		$\equiv (-1)^n \times n$
$a_{2,1} \equiv -2$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$		$a_{2,n}$
	,	$\equiv (-2) \times 3$		$\equiv -2 \times 5$		$\equiv -2 \times a_{1,n}$
		≡ -6		≡ −10		2,10
$a_{3,1} \equiv 3$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$		$a_{3,n}$
	$\equiv 3 \times (-2)$	$\equiv 3 \times 3$	$\equiv 3 \times (-4)$	$\equiv 3 \times 5$		$\equiv 3 \times a_{1,n}$
	≡ -6	≡ 9	≡ −12	≡ 15		·
$a_{4,1} \equiv -4$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$		$a_{4,n}$
	$\equiv (-4)(-2)$	$\equiv (-4) \times 3$	$\equiv -4 \times (-4)$	$\equiv -4 \times 5$		$\equiv -4 \times a_{1,n}$
	≡ 8	$\equiv -12$	≡ 16	$\equiv -20$		
$a_{5,1} \equiv 5$	a _{5,2}	$a_{5,3}$	a _{5,4}	a _{5,5}		$a_{5,n}$
	$\equiv 5 \times (-2)$	$\equiv 5 \times 3$	$\equiv 5 \times (-4)$	$\equiv 5 \times 5$		$\equiv 5 \times a_{1,n}$
	$\equiv -10$	≡ 15	≡ −20	≡ 25		
$a_{6,1} \equiv -6$	$a_{6,2}$	a _{6,3}	a _{6,4}	a _{6,5}		$a_{6,n}$
	$\equiv (-6)(-2)$	$\equiv (-6) \times 3$	$\equiv -6 \times (-4)$	$\equiv -6 \times 5$		$\equiv -6 \times a_{1,n}$
	≡ 12	$\equiv -18$	≡ 24	$\equiv -30$		
•••					•••	•••
$a_{n,1}$	$a_{n,2}$	$a_{n,3}$	$a_{n,4}$	$a_{n,5}$		$a_{n,n}$
$\equiv (-1)^n$	$\equiv a_{n,1}(-2)$	$\equiv a_{n,1} \times 3$				$\equiv a_{n,1} \times a_{1,n}$
×n						

(6)根據上述的發現,可知依照表格的結果為(1,n)變色在(n+1)×(n+1)的其中一組解,因此此狀況是有解的。但在實際操作的情況下我們沒有辦法按下負的次數,因此還需將其依照同餘的關係轉回正數,而若能將表格中的數字皆轉回除以n+1的餘數,則會是此狀況的最小步數按法,如此一來便可以找到(1,n)變色在(n+1)×(n+1)棋盤中解的最小步數。因此我們在 excel 軟體上利用mod函數將最小步數的工具製作出來,以便之後能簡化窮舉的狀況。下圖為用 excel 軟體驗證(1,10)變色在11×11棋盤下的狀況,並且也可利用 excel 軟體中的加總工具,得知最小步數為520。

	Α	В	С	D	Е	F	G	Н	1	J	K	L
1	n=	n+1=	1	-1	1	-1	1	-1	1	-1	1	-1
2	10	11	-1	1	-1	1	-1	1	-1	1	-1	1
3	1	-1	1	9	3	7	5	5	7	3	9	1
4	-1	1	9	4	5	8	1	1	8	5	4	9
5	1	-1	3	5	9	10	4	4	10	9	5	3
6	-1	1	7	8	10	5	2	2	5	10	8	7
7	1	-1	5	1	4	2	3	3	2	4	1	5
8	-1	1	5	1	4	2	3	3	2	4	1	5
9	1	-1	7	8	10	5	2	2	5	10	8	7
10	-1	1	3	5	9	10	4	4	10	9	5	3
11	1	-1	9	4	5	8	1	1	8	5	4	q
12	-1	1	1	9	3	7	5	5	項目個	數: 100	加總:	520
			-	-	-	-	-	-	-	- 1	- 1	- '

$(三)(n+1)k \times (n+1)k$ 棋盤有解

 $(n+1)k \times (n+1)k = k^2[(n+1) \times (n+1)]$,故我們可將其視為 k^2 個 $(n+1) \times (n+1)$ 棋盤(-3) 一部分左上角是白色(n+1) ,前述已證明 $(n+1) \times (n+1)$ 棋盤有解(-3) ,由同餘關係亦可知左上角白色之 $(n+1) \times (n+1)$ 棋盤有解,因此可知(1,n) 變色在 $(n+1)k \times (n+1)k$ 棋盤中有解。

(四) $[(n+1)k+1] \times [(n+1)k+1] \sim [(n+1)k+n] \times [(n+1)k+n]$ 棋盤無解 由於僅第一列按鈕可控制第一列的棋盤,因此只須說明第一列按鈕無法使第一列方格成 功變色即可,所以我們將第一列方格拆開為(n+1)k 格與t 格 $(t=1\sim n)$,如下圖。且因 (n+1)k 有解, $1\sim n$ 無解,所以 $[(n+1)k+t] \times [(n+1)k+t]$, $(t=1\sim n)$ 棋盤無解。

2. 當(n+1)k 是奇數:

(五)小結

- 1. (1,n)變色在 $t \times t$ 棋盤(其中 0 < t < n+1)無解
- 2. (1,n)變色僅在 $(n+1) \times (n+1)$ 的倍數棋盤中有解
- 3. (1,n)變色在 $(n+1) \times (n+1)$ 棋盤的最小步數解會具有對稱性,如(3)下方圖示。

六、說明(1,n)變色在 $n \times n$ 棋盤最小步數的上下界

- (一)根據五(二)2.(5)可知(1,n)變色在n×n棋盤有解,接著我們原本想由該表轉為除以(n+1)的餘數,即可找出其最小步數,但在同餘的變換上並無找到規律,因此我們改為由同餘的性質求最小步數的上下界。
- (二)最小步數的下界說明:我們將按鈕兩兩為一組相加(取上下相鄰之兩按鈕),以第一 行為例, $a_{1,1}$ 與 $a_{2,1}$ 為一組,其和為一1,接著我們將其加上(n+1),使其變為除以 (n+1)之餘數,則必定小於等於最小步數。說明如下:若設任兩個上下相鄰按鈕 為 $a \cdot b$,且 $a_0 \cdot b_0$ 分別為其除以(n+1)之餘數(即為最小步數),並令(a+b)除以 (n+1)的餘數為c,如右式 $\begin{cases} a \equiv a_0 \mod (n+1) \\ b \equiv b_0 \mod (n+1) \\ a+b \equiv c \mod (n+1) \end{cases}$,則當 $a_0 + b_0 < n+1$ 時, $a_0 + b_0 = c$,因為此時 $0 < a_0 + b_0 < n+1$ 是顯然的 $(a_0 + b_0 +$

 $a_0 + b_0 = c$,因為此時 $0 \le a_0 + b_0 < n + 1$ 是顯然的(兩正數相加不可能為負),而c小於n+1,又可根據同餘運算得知 $a_0 + b_0 = c$;當 $a_0 + b_0 > n + 1$ 時,因c不可能大於n+1,所以必定小於 $a_0 + b_0$,所以我們取c作為下界。

(三)最小步數的上界說明:同 2. ,在第 s 行中的上下相鄰必為異號,且其和的絕對值 為 $\left|a_{1,s}\right| = \left|s\right|$ (如下圖之 4×4 棋盤, $\left|a_{2,3} + a_{3,3}\right| = 3$),又在(1,n)變色中只有n列按 鈕,則 $0 < \left|\left|a\right| - \left|b\right|\right| < n+1$, $0 < a_0 + b_0 \le 2n-1$,且 $a_0 + b_0 = 2n-1$ 時,a+b必定為-1,得c=n,又實際按下次數會3n+1,則此時上界為3n+1>2n-1,且 $a_0 \cdot b_0$ 減小時,3n-10。

$a_{1,1}\equiv 1$	$a_{1,2} \equiv -2 \varphi$	$a_{1,3}\equiv 3$
$a_{2,1} \equiv -24$	$a_{2,2}$	a _{2,3}
	$\equiv (-2)(-2)$	$\equiv (-2) \times 3$
	≣ 4₽	≡ −6₽
$a_{3,1} \equiv 3 \varphi$	a _{3,2}	a _{3,3} ↓
	$\equiv 3 \times (-2)$	≡ 3 × 3 ⁻
	≡ −6₽	≣ 9₽

(四)最小步數上下界說明(分為奇數、0(mod4)、2(mod4)三個情形)

當n為奇數時的上界 1.

圖(一)(1)為(1,5)變色在6×6棋盤的解,求上界時先將上下相鄰的按鈕次數相加, 如圖(一)(2),且由前述之點對稱情形,所以除了最中間的那一行外皆須再乘2,且 其數值還須加上n+1,如圖(-)(3),再加總起來,得上界為 $(7+8)\times 3\times 2+$ 9×3=117;以此類推,圖(二)(1)為(1,7)變色在8×8棋盤的解(因對稱性質只需 取一半),求上界時先將上下相鄰的按鈕次數相加,如圖(二)(2),除最右邊的那一 行外皆須再乘2,且數值還須加上n+1,如圖(二)(3),可得其上界為 $(9+10+11) \times 4 \times 2 + 12 \times 4 = 288$

我們將上述式子分為兩項,分別找出其一般式,不難發現,括號內的項數為 $\frac{n-1}{2}$, 每往後一項其值會增加1,且首項為n+2,則其末項為 $n+2+\frac{n-3}{2}=\frac{3n+1}{2}$,又每 $\frac{n+1}{2}$ 個相同的數,故在加號前的式子其和的一般式為:

$$\frac{(n+2+\frac{3n+1}{2})\frac{n-1}{2}}{2}\times(n+1)=\frac{5(n+1)^2(n-1)}{8}$$

,而加號後將為 $\frac{3n+3}{2} \times \frac{n+1}{2}$,整理過後得知當n為奇數時,其上界為:

$$\frac{(n+1)^2(5n+1)}{8}$$
 °

1	-2	3	-4	5
-2	4	-6	8	-10
3	-6	9	-12	15
-4	8	-12	16	-20
5	-10	15	-20	25

$a_{1,1} = 1$	$a_{1,2} + a_{2,2} = 2$	$a_{1,3} = 3$	
$a_{1,2} + a_{1,3} = 1$	$a_{3,2} + a_{4,2} = 2$	$a_{2,3} + a_{3,3} = 3$	
$a_{1,4} + a_{1,5} = 1$	$a_{5,2} = 2$	$a_{4,3} + a_{5,3} = 3$	F21 (
			一圖(

1 + 6 = 7	2 + 6 = 8	3 + 6 = 9	2 + 6 = 8	1 + 6 = 7
7	8	9	8	7
7	8	9	8	7

1	-2	3	-4
-2	4	-6	8
3	-6	9	-12
-4	8	-12	16
5	-10	15	-20
-6	12	-18	24
7	-14	21	-28

圖(二)(1)

$a_{1,1} = 1$	$a_{1,2} + a_{2,2} = 2$	$a_{1,3} = 3$	$a_{1,4} + a_{2,4} = 4$
$a_{2,1} + a_{3,1} = 1$	$a_{3,2} + a_{4,2} = 2$	$a_{2,3} + a_{3,3} = 3$	$a_{3,4} + a_{4,4} = 4$
$a_{4,1} + a_{5,1} = 1$	$a_{5,2} + a_{6,2} = 2$	$a_{4,3} + a_{5,3} = 3$	$a_{5,4} + a_{6,4} = 4$
$a_{6,1} + a_{7,1} = 1$	$a_{7,2} = 2$	$a_{6,3} + a_{7,3} = 3$	$a_{7,4} = 4$

圖(二)(2)

1+8=9	2 + 8 = 10	3 + 8 = 11	4 + 8 = 12
9	10	11	12
9	10	11	12
9	10	11	12

圖(二)(3)

2. 當n為奇數時的下界

圖(三)(1)為(1,5)變色在6×6棋盤的解,求下界時先將上下相鄰的按鈕次數相加,如圖(三)(2),且由前述之點對稱情形,所以除了最右邊的那一行外皆須再乘2,且其數值還須加上n+1,如圖(三)(2),所以下界為(5+4)×3×2+3×3=63;圖(四)(1)為(1,7)變色在8×8棋盤的解(因對稱性質只需取一半),求下界時先將上下相鄰的按鈕次數相加,如圖(四)(2),除最右邊的那一行外皆須再乘2,且數值還須加上n+1,如圖(四)(3),所以其上界為(7+6+5)×4×2+4×4=160。我們將上述式子分為兩項,分別找出其一般式,不難發現,括號內的項數為 $\frac{n-1}{2}$,每往後一項其值會減少1,且首項為n,則其末項為 $n+\frac{n-1}{2}-1=\frac{n+3}{2}$,又每行共有 $\frac{n+1}{2}$ 個相同的數,故在加號前的式子其和的一般式為

$$\frac{(n+\frac{n+3}{2})\frac{n-1}{2}}{2} \times (n+1) = \frac{3(n+1)^2(n-1)}{8}$$

,而加號後將為 $\left(\frac{n+1}{2}\right)^2$,整理過後得知當n為奇數時,其下界為:

$$\frac{(n+1)^2(3n-1)}{8} \ \circ$$

1	-2	3	-4	5
-2	4	-6	8	-10
3	-6	9	-12	15
-4	8	-12	16	-20
5	-10	15	-20	25

圖(三)(1)

$a_{1,1} + a_{2,1} = -1$	$a_{1,2} = -2$	$a_{1,3} + a_{2,3} = -3$
$a_{3,1} + a_{4,1} = -1$	$a_{2,2} + a_{3,2} = -2$	$a_{3,3} + a_{4,3} = -3$
$a_{5,1} = -1$	$a_{4,2} + a_{5,2} = -2$	$a_{5,3} = -3$

圖(三)(2)

-1+6=5	-2+6=4	-3 + 6 = 3	4	5
5	4	3	4	5
5	4	3	4	5

圖(三)(3)

1	-2	3	-4
-2	4	-6	8
3	-6	9	-12
-4	8	-12	16
5	-10	15	-20
-6	12	-18	24
7	-14	21	-28

圖(四)(1)

$a_{1,1} + a_{2,1} = -1$	$a_{1,2} = -2$	$a_{1,3} + a_{2,3} = -3$	$a_{1,4} = -4$
$a_{3,1} + a_{4,1} = -1$	$a_{2,2} + a_{3,2} = -2$	$a_{3,3} + a_{4,3} = -3$	$a_{2,4} + a_{3,4} = -4$
$a_{5,1} + a_{6,1} = -1$	$a_{4,2} + a_{5,2} = -2$	$a_{5,3} + a_{6,3} = -3$	$a_{4,4} + a_{5,4} = -4$
$a_{7,1} = -1$	$a_{6,2} + a_{7,2} = -2$	$a_{7,3} = -3$	$a_{6,4} + a_{7,4} = -4$

圖(四)(2)

-1 + 8 = 7	-2 + 8 = 6	-3 + 8 = 5	-4 + 8 = 4
7	6	5	4
7	6	5	4
7	6	5	4

圖(四)(3)

- (1) 在找偶數的上界時,我們發現同餘0(mod4)與同餘2(mod4)的運算方法不同,因此 我們將其分開說明。
- (2) 在求(1,8)變色在9×9棋盤的最小步數下界時,先將上下相鄰的按鈕次數相加,且 由前述之點對稱情形,每一行的數值皆須再×2,且還須加上n+1,可得其上界為

 $[(10+12)\times 5+(11+13)\times 4]\times 2=412$

我們將上述式子分為兩項,分別找出其一般式,不難發現,加號前的括號內的項數為 $\frac{n}{4}$,每往後一項其值會增加2,且首項為n+2,則其末項為 $n+2+\frac{n-4}{4}\times 2=\frac{3n}{2}$,又每行共有 $\frac{n+2}{2}$ 個相同的數,則其加號前的一般式為:

$$\frac{(n+2+\frac{3n}{2})\frac{n}{4}}{2} \times \frac{n+2}{2} = \frac{n(5n+4)(n+2)}{32}$$

$$\frac{(n+3+\frac{3n+2}{2})\frac{n}{4}}{2} \times \frac{n}{2} = \frac{n^2(5n+8)}{32}$$

最後還要再×2,所以 $n \equiv 0 \pmod{4}$ 時, $(n+1) \times (n+1)$ 棋盤之最小步數的上界為:

$$\left(\frac{n(5n+4)(n+2)}{32} + \frac{n^2(5n+8)}{32}\right) \times 2 = \frac{(5n^2+11n+4)n}{8}$$

在求(1,8)變色在 9×9 棋盤的最小步數下界時,先將上下相鄰的按鈕次數相加,且由前述之點對稱情形,每一行皆須再乘2,且其數值還須加上n+1,所以其上界為 $[(6+8) \times 4 + (5+7) \times 4] \times 2 = 208$ 。

我們將上述式子分為兩項,分別找出其一般式,不難發現,加號前括號內的項數為 $\frac{n}{4},$ 每往後一項其值會減少2,且首項為n,則其末項為 $n-2\left(\frac{n-4}{4}\right)=\frac{n+4}{2}$,又每 行共有 $\frac{n}{2}$ 個相同的數,故在加號後的式子其和的一般式為:

$$\frac{\left(n + \frac{n+4}{2}\right)\frac{n}{4}}{2} \times \frac{n}{2} = \frac{n^2(3n+4)}{32}$$

加號後括號內的項數為 $\frac{n}{4}$,每往後一項其值會減少2,且首項為n-1,則其末項為 $n-1-2\left(\frac{n-4}{4}\right)=\frac{n+2}{2}$,又每行共有 $\frac{n+2}{2}$ 個相同的數,故在加號後的式子其和的一

般式為:

$$\frac{\left(n-1+\frac{n+2}{2}\right)\frac{n}{4}}{2} \times \frac{n+2}{2} = \frac{3n^2(n+2)}{32}$$

最後還要再×2,所以 $n \equiv 0 \pmod{4}$ 時, $(n+1) \times (n+1)$ 棋盤之最小步數的下界為:

$$\left(\frac{n^2(3n+4)}{32} + \frac{3n^2(n+2)}{32}\right) \times 2 = \frac{(3n+5)n^2}{8}$$

在求(1,6)變色在 7×7 棋盤的最小步數上界時,先將上下相鄰的按鈕次數相加,且由前述之點對稱情形,所以每一行皆須再乘2,且其數值還須加上n+1,所以上界為 $[(8+10) \times 4+9 \times 3] \times 2 = 198$ 。

我們將上述式子分為兩項,分別找出其一般式,不難發現,加號前的括號內的項數為 $\frac{n+2}{4}$,每往後一項其值會增加2,且首項為n+2,則其末項為 $n+2+2\left(\frac{n-2}{4}\right)=\frac{3n+2}{2}$,又每行共有 $\frac{n+2}{2}$ 個相同的數,則其加號前的一般式為:

$$\frac{\left(n+2+\frac{3n+2}{2}\right)\left(\frac{n+2}{4}\right)}{2} \times \frac{(n+2)}{2} = \frac{(5+6)(n+2)^2}{32}$$

加號後的括號內的項數為 $\frac{n-2}{4}$,每往後一項其值會增加2,且首項為n+3,則其末項為 $n+3+2\left(\frac{n-6}{4}\right)=\frac{3n}{2}$,又每行共有 $\frac{n}{2}$ 個相同的數,則其加號後的一般式為:

$$\frac{\left(n+3+\frac{3n}{2}\right)\left(\frac{n-2}{4}\right)}{2} \times \frac{n}{2} = \frac{n(5n+6)(n-2)}{32}$$

最後還要再 \times 2,所以 $n \equiv 0 \pmod{4}$ 時, $(n+1) \times (n+1)$ 棋盤最小步數的上界為:

$$\left(\frac{(5+6)(n+2)^2}{32} + \frac{n(5n+6)(n-2)}{32}\right) \times 2 = \frac{(5n+6)(n^2+n+2)}{8}$$

在求(1,6)變色在 7×7 棋盤的最小步數下界時,先將上下相鄰的按鈕次數相加,且由前述之點對稱情形,所以每一行皆須再乘2,且其數值還須加上n+1,所以下界為 $[(4+6) \times 3 + 5 \times 4] \times 2 = 100$ 。

我們將上述式子分為兩項,分別找出其一般式,不難發現,加號前括號內的項數為 $\frac{n+2}{4}$,每往後一項其值會減少2,且首項為n,則其末項為 $n-2\left(\frac{n-2}{4}\right)=\frac{n+2}{2}$,又 每行共有 $\frac{n}{2}$ 個相同的數,故在加號前的式子其和的一般式為:

$$\frac{\left(n + \frac{n+2}{2}\right)\frac{n+2}{4}}{2} \times \frac{n}{2} = \frac{n(3n+2)(n+2)}{32}$$

加號後括號內的項數為 $\frac{n-2}{4}$,每往後一項其值會減少2,且首項為n-1,則其末項為 $n-1-2\left(\frac{n-6}{4}\right)=\frac{n+4}{2}$,又每行共有 $\frac{n+2}{2}$ 個相同的數,故在加號後的式子其和的一般式為:

$$\frac{\left(n-1+\frac{n+2}{2}\right)\frac{n}{4}}{2} \times \frac{n+2}{2} = \frac{3n^2(n+2)}{32}$$

最後還要再×2,所以 $n \equiv 0 \pmod{4}$ 時, $(n+1) \times (n+1)$ 棋盤之最小步數的下界為:

$$\left(\frac{n(3n+2)(n+2)}{32} + \frac{3n^2(n+2)}{32}\right) \times 2 = \frac{(3n+2)(n+2)(n-1)}{8}$$

(五)小結: (1,n)變色在 $n \times n$ 棋盤最小步數的上下界:

1. 當n為奇數:

$$\begin{cases} \text{上界}: \frac{(n+1)^2(5n+1)}{8} \\ \text{下界}: \frac{(n+1)^2(3n-1)}{8} \end{cases}$$

$$\begin{cases} 上界: \frac{(5n^2 + 11n + 4)n}{8} \\ \text{下界: } \frac{(3n+5)n^2}{8} \end{cases}$$

3. 當 $n \equiv 2 \pmod{4}$

$$\begin{cases} 上界: \frac{(5n+6)(n^2+n+2)}{8} \\ \text{下界: } \frac{(3n+2)(n+2)(n-1)}{8} \end{cases}$$

七、說明(p,n)變色在不同棋盤中解的情況

在討論(p,n)變色時,首先為避免對稱性重複討論,我們令p < n。此外我們發現若 $p \rightarrow n$ 不互質的話,會出現如(2,4)、(3,6)等可簡化成(1,2)變色的情況,所以令(p,n)=1。 (-) 討論(2,n)的情况

1. 說明(2,n)(n 和 2 互質)變色在 $t \times t(t < n + 2)$ 棋盤的情況下無解

(1)t為偶數的情況

在t為偶數的情況下,按鈕次數從左而右依序為2,n-2,6,n-6,10,n-10····依序下去, 到第t-1個按鈕將會是2+2(t-2)下,但最後一格是白色,白色格子要按n下才會變成 黑色,而且它只能被最後一個按鈕控制,可得 $2+2(t-2)\equiv n \pmod{n+2}$,其中2+2(t-2)為偶數,又n和 2 互質,即n為奇數,出現矛盾,故無解。

(2)t為奇數的情況

在t為奇數的情況下,按鈕次數也是從左而右依序2,n-2,6,n-6,10,n-10····依序下去,到第t個按鈕將會是n-2(t-2)下,而最後一格是黑色,黑色格子要按2下才會變成白色,而且它只能被最後一個按鈕控制,可得 $n-2t+4\equiv 2 \rightarrow n \equiv 2t-2 \pmod{n+2}$,其中2t-2為偶數,又n和 2 互質,即n為奇數,出現矛盾,故無解。

2. 說明 $(2,n)(n \to 2 \cup 2)$ 變色在 $(n+2) \times (n+2)$ 的情況下有解

根據前述五(二)2.(5),我們用相同的方法找到了(2,n)變色在(n+2)×(n+2)的解,如下表所示(下表為(2,n)變色在(n+2)×(n+2)棋盤的情況)。無論是mod多少,第一列都符合 $a_{1,n}\equiv (-1)^{n+1}\times 2n(mod\ n+2)$ 因 $a_{1,1}$ 和 $a_{2,1}$ 共同控制 $b_{2,1}$ (白色)的變色,則 $a_{1,1}+a_{2,1}\equiv -2$,又 $a_{1,1}$ 、 $a_{2,1}$ 、 $a_{1,2}$ 、 $a_{2,2}$ 共同控制 $b_{2,2}$ (黑色)的變色,又 $a_{1,1}+a_{2,1}\equiv -2$,則 $a_{1,2}+a_{2,2}\equiv (-4)\times (-1)\equiv 4$,又 $a_{1,2}\equiv 1\times -4$,則 $a_{2,2}\equiv (-1)\times (-4)-1\times (-4)\equiv (-2)\times (-4)\equiv 8$;因 $a_{2,1}$ 和 $a_{3,1}$ 共同控制 $a_{3,1}$ (黑色)的變色,則 $a_{2,1}+a_{3,1}\equiv 2$,又 $a_{2,1}$ 、 $a_{3,1}$ 、 $a_{2,2}$ 、 $a_{3,2}$ 共同控制 $a_{3,2}$ (白色)的變色,又 $a_{2,1}+a_{3,1}\equiv 2$,則 $a_{2,2}+a_{3,2}\equiv (-4)\times 1\equiv -4$,又 $a_{1,3}\equiv 1\times 6$,則 $a_{3,2}\equiv 1\times (-4)-(-2)\times (-4)\equiv (-4)\times 3\equiv -12$,可知 $a_{2,3}\equiv a_{3,2}\equiv -12$;因 $a_{2,2}+a_{3,2}\equiv -4$,又 $a_{2,2}$ 、 $a_{3,2}$ 、 $a_{2,3}$ 、 $a_{3,3}$ 共同控制 $a_{3,3}$ (黑色)的變色,又 $a_{2,2}+a_{3,2}\equiv -4$,則 $a_{2,3}+a_{3,3}\equiv 6\times 1\equiv 6$,又 $a_{1,3}\equiv 1\times 6$,則 $a_{3,3}\equiv 2-8-(-12)-(-12)\equiv 18$

$a_{1,1} \equiv 1 \times 2$	$a_{1,2}$	$a_{1,3} \equiv 1 \times 6$	$a_{1,4}$	$a_{1,5}$	•••	$a_{1,n}$
≡ 2	$\equiv 1 \times (-4)$	≡ 6	$\equiv 1 \times (-8)$	$\equiv 1 \times 10$		$\equiv (-1)^{n+1}$
	≡ −4		≡ -8	≡ 10		$\times 2n$
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$		$a_{2,n}$
$\equiv -2 \times 2$	$\equiv (-2)(-4)$	$\equiv (-2) \times 6$	≡ −2	$\equiv -2 \times 10$		$\equiv -2 \times a_{1,n}$
$\equiv -4$	≡ 8	≡ −12	× (-8)	≡ −20		
			≡ 16			
$a_{3,1}$	$a_{3,2}$	$a_{3,3} \equiv 3 \times 6$	$a_{3,4}$	$a_{3,5}$		$a_{3,n} \equiv 3 \times a_{1,n}$
$\equiv 3 \times 2$	$\equiv 3 \times (-4)$	≡ 18	$\equiv 3 \times (-8)$	$\equiv 3 \times 10$		
≡ 6	≡ −12		≡ −24	≡ 30		
$a_{4,1}$	$a_{4,2}$	a _{4,3}	$a_{4,4}$	$a_{4,5}$		$a_{4,n}$
$\equiv -4 \times 2$	$\equiv (-4)(-4)$	$\equiv (-4) \times 6$	≡ −4	$\equiv -4 \times 10$		$\equiv -4 \times a_{1,n}$
≡ -8	≡ 16	≡ −24	× (-8)	≡ −40		
			≡ 32			
$a_{5,1}$	a _{5,2}	$a_{5,3} \equiv 5 \times 6$	$a_{5,4}$	$a_{5,5}$		$a_{5,n} \equiv 5 \times a_{1,n}$
$\equiv 5 \times 2$	$\equiv 5 \times (-4)$	≡ 30	$\equiv 5 \times (-8)$	$\equiv 5 \times 10$		
≡ 10	≡ −20		≡ −40	≡ 50		
$a_{6,1}$	a _{6,2}	a _{6,3}	a _{6,4}	a _{6,5}		$a_{6,n}$
$\equiv -6 \times 2$	$\equiv (-6)(-4)$	$\equiv (-6) \times 6$	≡ -6	$\equiv -6 \times 10$		$\equiv -6 \times a_{1,n}$
≡ −12	≡ 24	≡ −36	× (-8)	≡ −60		
			≡ 48			
•••	•				•••	
$a_{n,1}$	$a_{n,2}$	$a_{n,3}$	$a_{n,4}$	$a_{n,5}$	•••	$a_{n,n}$
$\equiv (-1)^{n+1}$	$\equiv a_{n,1}(-4)$	$\equiv a_{n,1} \times 6$	$\equiv a_{n,1}$	$\equiv a_{n,1} \times 10$		$\equiv a_{n,1} \times a_{1,n}$
$\times 2n$			× (-8)			

3. 說明(2,n), (n+2) 變色在 $(n+2)k \times (n+2)k$ 的情況下有解

因 $(n+2)k \times (n+2)k = k^2[(n+2) \times (n+2)]$,故我們可將其視為 k^2 個 $(n+2) \times (n+2)$ 棋盤(-3) 一部分左上角是白色(n+2),前述已證明 $(n+2) \times (n+2)$ 棋盤有解(-3) 在上角黑色(n+2),由同餘關係亦可知左上角白色之 $(n+2) \times (n+2)$ 棋盤有解,因此可知(2,n)變色在 $(n+2)k \times (n+2)k$ 棋盤中有解。

 $4.[(n+2)k+1] \times [(n+2)k+1] \sim [(n+2)k+(n+1)] \times [(n+2)k+(n+1)]$ 棋盤無解由於僅第一列按鈕可控制第一列的棋盤,因此只須說明第一列按鈕無法使第一列方格成功變色即可,所以我們將第一列方格拆開為(n+2)k格與t格 $(t=1\sim n+1)$,且因(n+2)k有解, $1\sim n+1$ 無解,所以 $[(n+2)k+t] \times [(n+2)k+t]$, $(t=1\sim n+1)$ 棋盤無解。

- (二) 討論(p, n)的情況,其中p < n, (p, n) = 1
- 說明(p,n)(n和p互質)變色在t×t(t<n+p)棋盤的情況下無解 經過分析以後,我們發現在任何狀況下,第一列的步數的規律會變成:

(1) t為偶數的情況

在 t為偶數,n+p也是偶數的情況下,因為t < n+p,所以最接近n+p的偶數格為t=n+p-2,利用公式可得此按鈕的步數為(n+p-2-1)p下,也就是(n+p)p-3p必須同餘n,即 $(n+p)p-3p\equiv n \to -3p\equiv n \to 3n\equiv n \to 2n\equiv 0 \pmod{n+p}$,與p<n,(p,n)=1矛盾,故無解。依此類推,向前的偶數格會依序減2p次,分別得到 $3n\equiv n \cdot 5n\equiv n \cdot 7n\equiv n\cdots$,皆是矛盾的,因此此狀況下的所有棋盤都無解。

(2) t為奇數的情況

在 t為奇數,n+p也是奇數的情況下,因為t < n+p,所以最接近n+p的奇數格為n+p-2,利用公式可得此按鈕的步數為-(n+p-2-1)p下,也就是-(n+p)p+3p,必須同餘p,即 $-(n+p)p+3p \equiv p \to 2p \equiv 0 \pmod{n+p}$,與p < n,(p,n) = 1矛盾,故無解。依此類推,向前的偶數格會依序增加2p次,分別得到 $3p \equiv p$ 、 $5p \equiv p$ 、 $7p \equiv p$ …,皆是矛盾的,因此此狀況下的所有棋盤都無解。

在 t為奇數,n+p是偶數的情況下,因為t < n+p,所以最接近n+p的奇數格為n+p-1,利用公式可得此按鈕的步數為-(n+p-1-1)p下,也就是-(n+p)p+2p,必須同餘p,即 $-(n+p)p+2p \equiv p \rightarrow 2p \equiv p \rightarrow p \equiv 0 (mod \, n+p)$,與p < n,(p,n) = 1矛盾,故無解。依此類推,向前的偶數格會依序增加2p次,分別得到 $2p \equiv p \cdot 4p \equiv p \cdot 6p \equiv p \cdots$,皆是矛盾的,因此此狀況下的所有棋盤都無解。

2. 說明(p,n)(n和p互質)變色在 $(n+p) \times (n+p)$ 的情況下有解

根據前述七(一)2,我們用相同的方法歸納出了(p,n)變色在(n+p)×(n+p)的解,如下表所示(下表為(p,n)變色在(n+p)×(n+p)棋盤的情況)。無論是mod多少,第一列都符合 $a_{1,n}\equiv (-1)^{n+1}$ × $pn(mod\ n+p)$ 因 $a_{1,1}$ 和 $a_{2,1}$ 共同控制 $b_{2,1}$ (白色)的變色,則 $a_{1,1}+a_{2,1}\equiv -p$,又 $a_{1,1}$ 、 $a_{2,1}$ 、 $a_{1,2}$ 、 $a_{2,2}$ 共同控制 $b_{2,2}$ (黑色)的變色,又 $a_{1,1}+a_{2,1}\equiv -p$,則 $a_{1,2}+a_{2,2}\equiv (-2p)$ × $(-1)\equiv 2p$,又 $a_{1,2}\equiv 1$ ×-2p,則 $a_{2,2}\equiv (-1)$ ×(-2p)=1× $(-2p)\equiv (-2)$ × $(-2p)\equiv 4p$;因 $a_{2,1}$ 和 $a_{3,1}$ 共同控制 $b_{3,1}$ (黑色)的變色,則 $a_{2,1}+a_{3,1}\equiv p$,又 $a_{2,1}$ 、 $a_{3,1}$ 、 $a_{2,2}$ 、 $a_{3,2}$ 共同控制 $b_{3,2}$ (白色)的變色,又 $a_{2,1}+a_{3,1}\equiv p$,則 $a_{2,2}+a_{3,2}\equiv (-2p)$ × $1\equiv -2p$,又 $a_{1,3}\equiv 1$ ×3p,則 $a_{3,2}\equiv 1$ ×(-2p)=(-2)× $(-2p)\equiv (-2p)$ × $3\equiv -6p$,可知 $a_{2,3}\equiv a_{3,2}\equiv -6p$;因 $a_{2,2}+a_{3,2}\equiv -2p$,又 $a_{2,2}$ 、 $a_{3,2}$ 、 $a_{2,3}$ 、 $a_{3,3}$ 共同控制 $a_{3,3}$ (黑色)的變色,又 $a_{2,2}+a_{3,2}\equiv -2p$,則 $a_{2,3}+a_{3,3}\equiv 3p$ × $1\equiv 3p$,又 $a_{1,3}\equiv 1$ ×3p,則 $a_{3,3}\equiv p-4p-(-6p)-(-6p)\equiv 9p$

	I					
$a_{1,1}$	$a_{1,2}$	$a_{1,3} \equiv 1 \times 3p$	$a_{1,4}$	$a_{1,5}$	•••	$a_{1,n}$
$\equiv 1 \times p$	$\equiv 1 \times (-2p)$	$\equiv 3p$	≡ 1	$\equiv 1 \times 5p$		$\equiv (-1)^{n+p-1}$
$\equiv p$	$\equiv -2p$		$\times (-4p)$	$\equiv 5p$		$\times np$
			$\equiv -4p$			
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$		$a_{2,n}$
$\equiv -2 \times p$	$\equiv (-2)(-2p)$	$\equiv (-2) \times 3p$	$\equiv -2$	$\equiv -2 \times 5p$		$\equiv -2 \times a_{1,n}$
$\equiv -2p$	$\equiv 4p$	$\equiv -6p$	$\times (-4p)$	$\equiv -10p$		
			$\equiv 8p$			
$a_{3,1}$	$a_{3,2}$	$a_{3,3} \equiv 3 \times 3p$	$a_{3,4}$	$a_{3,5}$		$a_{3,n}$
$\equiv 3 \times p$	$\equiv 3 \times (-2p)$	$\equiv 9p$	$\equiv 3 \times (-4p)$	$\equiv 3 \times 5p$		$\equiv 3 \times a_{1,n}$
$\equiv 3p$	$\equiv -6p$		$\equiv -12p$	$\equiv 15p$		
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$		$a_{4,n}$
$\equiv -4 \times p$	$\equiv (-4)(-2p)$	$\equiv (-4) \times 3p$	$\equiv -4$	$\equiv -4 \times 5p$		$\equiv -4 \times a_{1,n}$
$\equiv -4p$	$\equiv 8p$	$\equiv -12p$	$\times (-4p)$	$\equiv -20p$		
			$\equiv 16p$			
$a_{5,1}$	$a_{5,2}$	$a_{5,3} \equiv 5 \times 3p$	$a_{5,4}$	$a_{5,5}$		$a_{5,n}$
$\equiv 5 \times p$	$\equiv 5 \times (-2p)$	$\equiv 15p$	$\equiv 5 \times (-4p)$	$\equiv 5 \times 5p$		$\equiv 5 \times a_{1,n}$
$\equiv 5p$	$\equiv -10p$		$\equiv -20p$	$\equiv 25p$		

a _{6,1}	a _{6,2}	a _{6,3}	$a_{6,4}$	$a_{6,5}$		$a_{6,n}$
$\equiv -6 \times p$	$\equiv (-6)(-2p)$	$\equiv (-6) \times 3p$	≡ −6	$\equiv -6 \times 5p$		$\equiv -6 \times a_{1,n}$
$\equiv -6p$	$\equiv 12p$	$\equiv -18p$	$\times (-4p)$	$\equiv -30p$		
			$\equiv 24p$			
•••					•••	•••
$a_{n,1}$	$a_{n,2}$	$a_{n,3}$	$a_{n,4}$	$a_{n,5}$	•••	$a_{n,n}$
$\equiv (-1)^{n+p-1}$	$\equiv a_{n,1}(-2p)$	$\equiv a_{n,1} \times 3p$	$\equiv a_{n,1}$	$\equiv a_{n,1} \times 5p$		$\equiv a_{n,1} \times a_{1,n}$
$\times pn$			$\times -4p$			

3. 說明(p,n), $(n \rightarrow p \leq p, p < n)$ 變色在 $(n+p)k \times (n+p)k$ 的情況下有解

因 $(n+p)k \times (n+p)k = k^2[(n+p) \times (n+p)]$,故我們可將其視為 k^2 個 $(n+p) \times (n+p)$ 棋盤(-a) 整(-a) 全上角為黑色,一部分左上角是白色),前述已證明 $(n+p) \times (n+p)$ 棋盤有解(-a) 是有黑色),由同餘關係亦可知左上角白色之 $(n+p) \times (n+p)$ 棋盤有解,因此可知(p,n) 變色在 $(n+p)k \times (n+p)k$ 棋盤中有解。

 $4.[(n+p)k+1] \times [(n+p)k+1] \sim [(n+p)k+(n+p-1)] \times [(n+p)k+(n+p-1)]$ 棋盤 無解

由於僅第一列按鈕可控制第一列的棋盤,因此只須說明第一列按鈕無法使第一列方格成功變色即可,所以我們將第一列方格拆開為(n+p)k格與t格 $(t=1\sim n+p-1)$,且因(n+p)k有解, $1\sim n+p-1$ 無解,所以 $[(n+p)k+t]\times[(n+p)k+t]$, $(t=1\sim n+p-1)$ 棋盤無解。

(三)小結

- 1.(p,n)變色((p,n) = 1, p < n)在 $t \times t$ 棋盤(其中 0 < t < n + p)無解
- 2.(p,n)變色((p,n) = 1, p < n)僅在 $(n+p) \times (n+p)$ 的倍數棋盤中有解

一、於(1,2)變色時的解:

- 1. 3×3棋盤有解,且其最小步數為4步。
- 2. 除 $3n \times 3n$ 棋盤外皆無解。

二、於(1,n)變色時的解:

- 1. 當t < n + 1時, $t \times t$ 棋盤無解。
- 2. $\mathbf{\mathfrak{G}}(n+1)k \times (n+1)k$ 棋盤有解。
- 3. (1,n)變色在 $(n+1) \times (n+1)$ 棋盤中的解為

$$\begin{cases} 第一列: a_{1,n} \equiv (-1)^n \times n \pmod{n+1} \\ 第一行: a_{n,1} \equiv (-1)^n \times n \pmod{n+1} \\ \\ 其餘按鈕: a_{m,l} \equiv a_{m,1} \times a_{1,l} \end{cases}$$

三、(1,n)變色時的步數上下界:

1. 當n為奇數:

$$\begin{cases} 上界為 \frac{(n+1)^2(5n+1)}{8} \\ \text{下界為} \frac{(n+1)^2(3n-1)}{8} \end{cases}$$

2. 當 $n \equiv 0 \pmod{4}$:

$$\begin{cases} \text{上界為} \frac{(5n^2 + 11n + 4)n}{8} \\ \text{下界為} \frac{(3n+5)n^2}{8} \end{cases}$$

3. 當 $n \equiv 2 \pmod{4}$:

$$\begin{cases} 上界為 \frac{(5n+6)(n^2+n+2)}{8} \\ \text{下界為} \frac{(3n+2)(n+2)(n-1)}{8} \end{cases}$$

四、於(p,n)變色(其中(p,n) = 1, p < n)時的解:

- 1. 當t < n + p時, $t \times t$ 棋盤無解。
- 2. $僅(n+p)k \times (n+p)k$ 棋盤有解。
- 3. (p,n)變色在 $(n+p) \times (n+p)$ 棋盤中的解為

陸、 未來展望

此次的研究中,我們成功找出不同變色,在不同正方形棋盤當中的有解情況,並且也討論出了其中的一組解,但在將解轉為餘數上我們沒有找到合適的方法,因此在最小步數上以找出上下界取代,未來希望可以持續研究找出最小步數的一般化結果。此外我們在3×3×3的立方體(一樣黑白相間),也嘗試了(1,2)變色的按法(以2×2×2的立方體為單位變色),結果是可行的,因此未來亦可將其推廣至立方體中進行研究。

柒、 參考資料

一、同餘的基本概念:

https://reurl.cc/WODpge

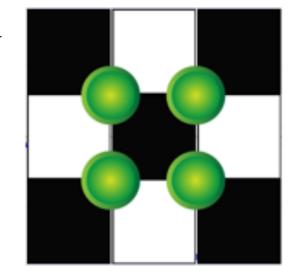
二、台灣科教館科學雙月刊 63-06,森棚教官數學題

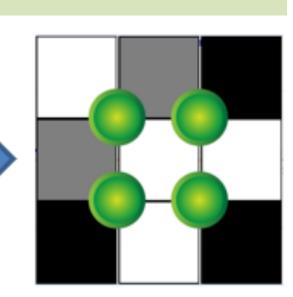
https://reurl.cc/ae16RQ

三、許志農 高中數學 2 龍騰版 單元(1)(2)

壹、研究動機

本作品之原題出自國立台灣科學教育館科學研習之第63卷第6期的森棚教官數學題-三段變速 之豬羊變色,我們原本先使用Scratch程式軟體將其變為一個實體的遊戲,實驗的過程中透 過按下田字型方格正中間來變色,在程式中我們用綠色按鈕來控制方格變色,若按下其中一 個按鈕,其周圍四個方格將變為下一種顏色,如右圖。





貳、研究目的

- 一、找出(1,2)變色在3×3、4×4以及5×5棋盤的解
- 二、找出(1,n)變色中的有解棋盤,與在 $(n+1) \times (n+1)$ 棋盤的解
- 三、找出(1,n)變色中最小步數的上下界
- 四、找出(p,n)變色中的有解棋盤,與在 $(n+p) \times (n+p)$ 棋盤的解

參、研究設備及器材

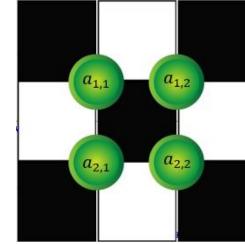
白紙、筆、電腦、程式軟體(scratch、Excel)及文書軟體(PowerPoint、Word)

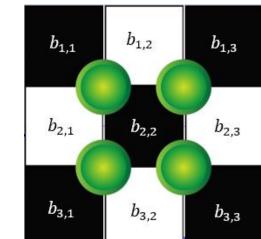
肆、研究方法與過程

一、定義名詞

(-)若方格位在棋盤中的第h列第k行,我們將其位置用 $b_{h,k}$ 表示,根據 按鈕位置的不同,我們將後續研究中,所需位置按鈕按下的次數記為

 $a_{n,m}$,如下圖。





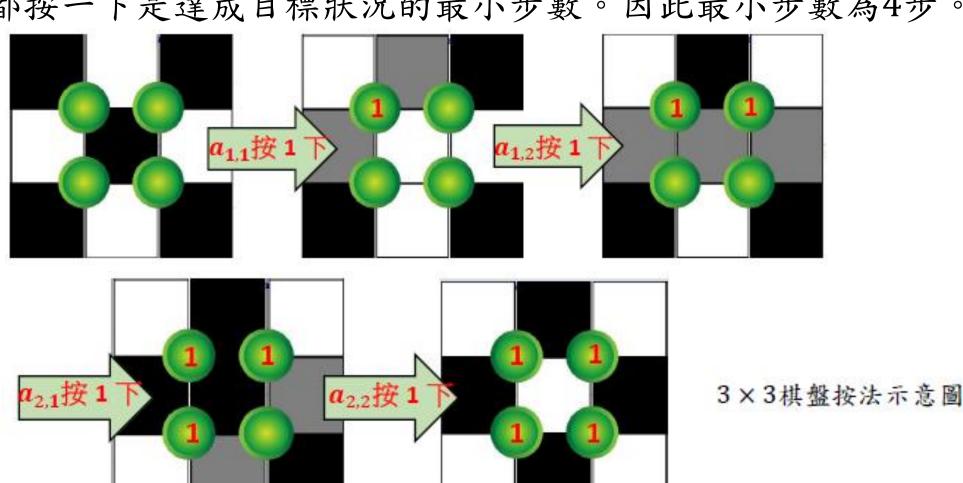
(二)考慮原題中最終須將黑白互換,且遊戲規則為黑變白需按1次,白 變黑需按2次,我們用序對『(1,2)』表示,之後若遊戲規則變為黑變白 需 i 次,白變黑需 j 次,則用序對(i,j)表示,定義為(i,j)變色。 (三)按鈕的同餘關係:

由於在變色的過程中,黑變白,白變灰,灰變黑,因此一個按鈕按三下 後會將田字型回復原狀。換言之,若其中一個解須將按鈕按下t下,則將 按鈕按下 $t+3k(k \in N)$ 下仍為其解,即所有解除以三的餘數皆會相同, 因此在後續的研究中我們都以同餘的方式討論。

二、(1,2)變色:

(一)(1,2)變色在3×3棋盤的解:

- 1. 我們觀察 $b_{1,1}$ 需從黑色變為白色,且 $b_{1,1}$ 僅受 $a_{1,1}$ 影響而變色,已知黑 色變為白色其周圍按鈕需共被按下1(mod3)次,故 $a_{1.1} \equiv 1(mod3)$ 。
- 2. 同1,可知 $b_{1,3} \cdot b_{3,1} \cdot b_{3,3}$ 皆需從黑變白,且分別僅受 $a_{1,2} \cdot a_{2,1} \cdot a_{2,2}$ 影響,因此 $a_{1,1} \equiv a_{1,2} \equiv a_{2,1} \equiv a_{2,2} \equiv 1 \pmod{3}$
- 3. 接著需檢驗剩下方格變色的狀況,其中 $b_{1,2}$ 隨 $a_{1,1}$ 和 $a_{1,2}$ 變色,且已知 $a_{1,1} \equiv a_{1,2} \equiv 1 \pmod{3}$,根據同餘的運算, $b_{1,2}$ 共被按了 $a_{1,1} + a_{1,2} \equiv 1 \pmod{3}$ 2(mod3)次,因此成功由原本的白色變為黑色。
- 4. 同3,可發現 $b_{2,1} \cdot b_{2,3} \cdot b_{3,2}$ 皆被按下2(mod3)次,所以都成功由原 本的白色變為黑色。
- 5. 最後檢驗正中間的方格 $b_{2,2}$,可知 $b_{2,2}$ 隨 $a_{1,1}$ 、 $a_{1,2}$ 、 $a_{2,1}$ 、 $a_{2,2}$ 變色, 且 $a_{1,1} \equiv a_{1,2} \equiv a_{2,1} \equiv a_{2,2} \equiv 1 \pmod{3}$,因此 $b_{2,2}$ 一共被按下: $a_{1,1} + a_{1,2} + a_{2,1} + a_{2,2} \equiv 4 \equiv 1 \pmod{3}$ 次,成功使 $b_{2,2}$ 由原本的黑色 變為白色。以上步驟成功使所有格子黑白顛倒,且不難發現,對每個 按鈕都按一下是達成目標狀況的最小步數。因此最小步數為4步。

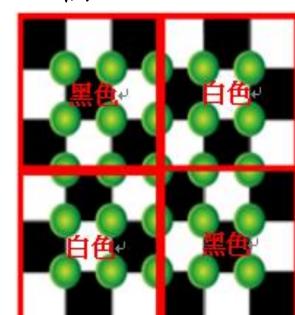


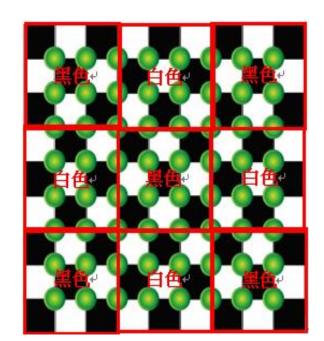
接著,我們繼續做了4×4、5×5、6×6棋盤的情況,發現了其中僅 $3 \times 3 \times 6 \times 6$ 有解,因此推測(1,2)變色僅在 $3k \times 3k$ 的情况有解,接 著我們將說明其原因。

(二)(1,2)變色在 $3k \times 3k$ 棋盤的解:

因 $3k \times 3k = k^2(3 \times 3)$,可將其視為 k^2 個 3×3 棋盤(分為左上角為黑 色與左上角為白色的3×3棋盤),而兩種不同的3×3棋盤皆有解, 因此 $3k \times 3k$ 棋盤必有解,接著我們將說明其最小步數。

我們發現,當 $3k \times 3k$ 的k為偶數時,左上角為黑色的 3×3 棋盤之數 量會和左上角為白色的 3×3 棋盤之數量相同,皆有 $\frac{k^2}{2}$ 個;當k為奇數 時,左上角為黑色的3×3棋盤之數量和左上角為白色的棋盤之數量 分別是 $\frac{k^2+1}{2}$ 與 $\frac{k^2-1}{2}$ 個,則可知黑色的 3×3 棋盤之數量比白色的多 $\frac{k^2+1}{}-\frac{k^2-1}{}=1/\!\!\!/ \ \, 6$



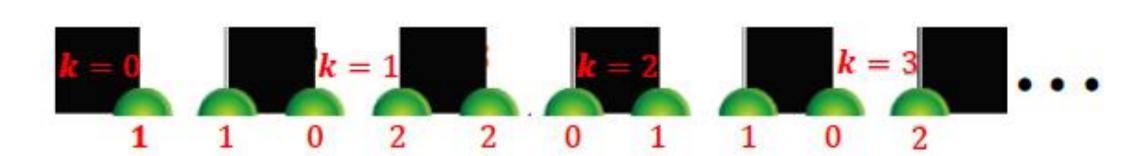


已知在 $3k \times 3k$ 圖形中,當k為偶數時,左上角為黑色和白色的 3×3 棋盤皆有 $\frac{k^2}{2}$ 個,則其最小步數為 $4 \times \frac{k^2}{2} + 8 \times \frac{k^2}{2} = 6k^2$ (4為左上角為 黑色之3×3棋盤的步數,8則為左上角白色之3×3棋盤的步數);又 k為奇數時,左上角為黑色與白色之 3×3 棋盤的數量分別有 $\frac{k^2+1}{2}$

與 $\frac{k^2-1}{2}$ 個,則其最小步數為 $4 \times \frac{k^2+1}{2} + 8 \times \frac{k^2-1}{2} = 6k^2 - 2$ 。

(三)(1,2)變色在非 $3k \times 3k$ 棋盤無解說明:

下圖為 $(3k+1) \times (3k+1)$ 簡化後的圖形,我們發現,由左到右的按 鈕按下次數依序為1、1、0、2、2、0(mod3)並無限循環下去,且當 停在3k+1時,方格 $b_{1,3k+1}$ 周圍之按鈕將只會被按下0(mod3)次,則 其無法成功變色(因能影響到其之按鈕僅 $a_{1,3k} \equiv 0 \pmod{3}$,則其不會 變色,因此無法成功),故(1,2)變色在 $(3k+1) \times (3k+1)$ 棋盤無解。



同理,於 $(3k+2) \times (3k+2)$,當k為偶數時,其周圍按鈕按下次數 將為1(mod3),且 $b_{1,3k+2}$ 的原始樣貌為白色,因此會使其從白色變 為灰色,無法成功變色,故 $(3k+2) \times (3k+2)$ 在k為偶數時無解; 當k為奇數時,其周圍按鈕按下次數為2(mod3)次,且 $b_{1,3k+2}$ 的原始 樣貌為黑色,因此會使其從黑色變為灰色,無法成功變色,故可知 $(3k+2)\times(3k+2)$ 在k為奇數時亦無解。

(四)小結:

- 1. (1,2)變色在3×3棋盤中的最小解為4
- 2. (1,2)變色僅在 $3k \times 3k$ 棋盤中有解,且最小步數為:

$$\begin{cases} 6k^2 & , k = 2m \\ 6k^2 - 2 & , k = 2m + 1 \end{cases} (m \cdot k \in \mathbb{N})$$

三、(1,3)變色:

- 1.同(1,2)變色,我們如法炮製的做了(1,3)變色的情況,發現只有在 $4k \times 4k$ 棋盤下有解。因此我們猜測在(1,n)變色的狀況下,也僅 會在 $(n+1)k \times (n+1)k$ 棋盤有解,以下會進行說明。
- 2. 接著,我們試著窮舉了 $n = 1 \sim 8$ 的(1, n)變色於 $(n + 1) \times (n + 1)$ 棋盤的解,以下我們僅呈現n=8的情形(表格為(1,8)變色在 $9\times$ 9棋盤中的按鈕按下次數)。

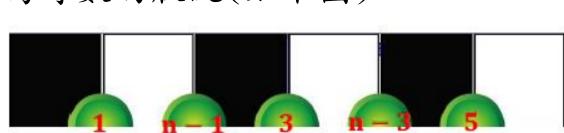
(1,8)變色,最小步數=304											
1	7	3	5	5	3	7	1				
7	4	3	8	8	3	4	7				
3	3	0	6	6	0	3	3				
5	8	6	7	7	6	8	5				
5	8	6	7	7	6	8	5				
3	3	0	6	6	0	3	3				
7	4	3	8	8	3	4	7				
1	7	3	5	5	3	7	1				

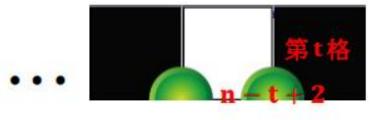
四、說明(1,n)變色在不同棋盤中解的情況

- (-) $t \times t$ 棋盤(其中0 < t < n+1)無解
- 1. t為偶數的狀況(如下圖)

當 t 為偶數,則第 t 格為白色方格,且其周圍的按鈕將被按下t-1 下。但在(1,n)變色時,白色方格需按下n(mod n + 1)次才會變為黑 色,因此 $t-1=n \rightarrow t=n+1$,已知t < n+1,出現矛盾 $(\rightarrow \leftarrow)$, 故(1,n)變色在 $t \times t$ 棋盤(t < n + 1, t為偶數)無解。

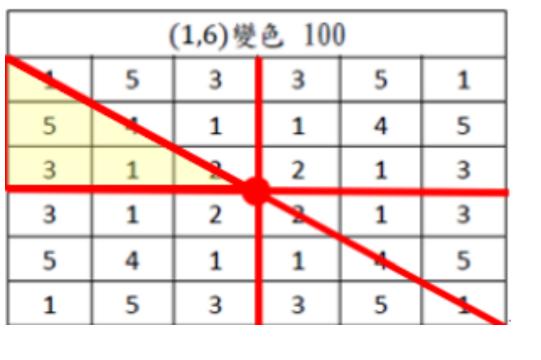
2. t為奇數的狀況(如下圖)





當 t 為奇數, 第 t 格為黑色方格,且其周圍的按鈕將被按下n-t+ 2下。但在(1,n)變色時,黑色方格需按下 1(mod n + 1)次才會變為 黑色,因此 $n-t+2=1 \rightarrow t=n+1$,已知t < n+1,出現矛盾 (→←),故(1,n)變色在 $t \times t$ 棋盤(t < n + 1, t為奇數)無解。

- 3. 根據前述說明,可知(1,n)變色在 $t \times t$ 棋盤(0 < t < n+1)無解。 (二)(1,n)變色在 $(n+1) \times (n+1)$ 棋盤的解
- 1. 我們窮舉了 $n = 1 \sim 8$ 時,(1,n)變色在 $(n+1) \times (n+1)$ 棋盤的最小 步數按法,發現了一些規律。首先,由於棋盤本身的對稱性很強, 因此在找最小步數按法的解時,可以利用對稱性來簡化,以下為最 小步數按法的對稱情況說明:
- (1)若以按鈕圖形最中心的點為對稱點,則將上下棋盤旋轉180°會變為 相同圖形,即最小步數按法會是點對稱圖形,因此如果一個棋盤的 上半部分有解,這個棋盤必有解。若n=5,最小按法會是以 $a_{3,3}$ 為 對稱中心的點對稱圖形;若n=6,最小按法會是以 $b_{4.4}$ 為對稱中心 的點對稱圖形。
- (2)除了(1)中提到點對稱性質外,也可發現當n為偶數時,最小步數 的按法亦會是線對稱圖形,其對稱軸為過中心的鉛垂線與水平線因 此僅須找出其左上角(圖形的土)即可。
- (3)根據(1)、(2)的情況,簡化為原圖形的四分之一後,由於棋盤的第 一排、第一列方格順序相同,第二排與第二列的方格亦相同,所以 它的按下次數也將以對角線為對稱軸對稱。因此可將圖形再沿著其 對角線分為一半,按下次數也將對稱(註:若有按鈕恰好在線上, 仍要計算)。故當n為偶數時,僅需須找出其 $\frac{1}{8}$ 部分的解,n為奇數時, 則須找出其一部分的解,剩餘情況只需以對稱的特徵推導即可。



- (4)繼續討論下去我們發現,若將負數納入考量,則第一列的按鈕會有以下的規律: $a_{1,n} \equiv (-1)^n \times n \pmod{n+1}$,說明如下:我們令起始條件的黑格為-1,白格為1,此時若周圍按鈕能使其數字加總變為 $0 \pmod{n+1}$,則可成功變色。因 $b_{1,1}$ 為黑色,則 $b_{1,1} + a_{1,1} \equiv -1 + a_{1,1} \equiv 0$,可得 $a_{1,1} \equiv 1 \pmod{n+1}$; $b_{1,2}$ 為白色,則 $b_{1,2} + a_{1,1} + a_{1,2} \equiv 0$, $1 + 1 + a_{1,2} \equiv 0$,可得 $a_{1,2} \equiv -2 \pmod{n+1}$,依此類推 $a_{1,3} \equiv 3$, $a_{1,4} \equiv -4 \cdots$ 。又由(3)的對稱關係可知,第一行也會是相同的狀況。
- (5)繼續向下推導,我們找到了(1,n)變色在 $(n+1) \times (n+1)$ 的解。除第一列、第一行外,中間的每個數字都會等於其首列及首行相乘,即 $a_{m,l} \equiv a_{m,1} \times a_{1,l}$,無論是模多少。

表(一)							
$a_{1,1}\equiv 1$	$a_{1,2}\equiv -2$	$a_{1,3} \equiv 3$		$a_{1,n} \equiv (-1)^n \times n$			
$a_{2,1} \equiv -2$	$a_{2,2} \equiv (-2)(-2) \equiv 4$	$a_{2,3}\equiv (-2)\times 3\equiv -6$		$a_{2,n} \equiv -2 \times a_{1,n}$			
$a_{3,1} \equiv 3$	$a_{3,2}\equiv 3\times (-2)\equiv -6$	$a_{3,3} \equiv 3 \times 3 \equiv 9$		$a_{3,n} \equiv 3 \times a_{1,n}$			
	•••						
$a_{n,1} \equiv (-1)^n \times n$	$a_{n,2} \equiv a_{n,1}(-2)$	$a_{n,3} \equiv a_{n,1} \times 3$	•••	$a_{n,n} \equiv a_{n,1} \times a_{1,n}$			

(6)表(一)即為(1,n)變色在(n+1)×(n+1)棋盤的其中一組解,因此可知此狀況 是有解的。但在實際操作下我們無法按下負的次數,因此還需依同餘的關係轉 回正數,而若能將表格中的數字皆轉回除以n+1的餘數,則會是此狀況的最小 步數按法,如此一來便可以找到(1,n)變色在(n+1)×(n+1)棋盤中解的最小 步數。因此我們在Excel軟體上利用mod函數將最小步數的工具製作出來,以便 之後能簡化窮舉的狀況,如下圖。

4	Α	В	С	D	Е	F	G	Н	- 1	項目個數: 1	00 加總	: 520
1	n=	n+1=	1	-1	1	-1	1	-1	1	-1	1	-1
2	10	11	-1	1	-1	1	-1	1	-1	1	-1	1
3	1	-1	1	9	3	7	5	5	7	3	9	1
4	-1	1	9	4	5	8	1	1	8	5	4	9
5	1	-1	3	5	9	10	4	4	10	9	5	3
6	-1	1	7	8	10	5	2	2	5	10	8	7
7	1	-1	5	1	4	2	3	3	2	4	1	5
8	-1	1	5	1	4	2	3	3	2		1	5
9	1	-1	7	8	10	5	2	2	5	10	8	7
10	-1	1	3	5	9	10	4	4	10	9	5	3
11	1	-1	9	4	5	8	1	1	8	5	4	9
12	-1	1	1	9	3	7	5	5	7	3	9	1

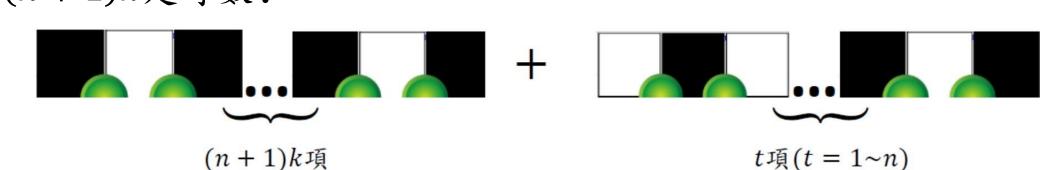
(三) $(n+1)k \times (n+1)k$ 棋盤有解

 $(n+1)k \times (n+1)k = k^2[(n+1) \times (n+1)]$, 可視為 k^2 個 $(n+1) \times (n+1)$ 棋盤(-1) 盤(-1) 公本 (n+1) 有為黑色,一部分左上角是白色),前述已證明棋盤 $(n+1) \times (n+1)$ 有解(-1) 有解(-1) 有黑色),由同餘關係亦可知左上角白色之(-1) (-1) 有解(-1) 以(-1) 有解(-1) 以(-1) 以(-1) 有解(-1) 以(-1) 以(

(四) $[(n+1)k+t] \times [(n+1)k+t]$, 0 < t < (n+1)棋盤無解由於僅第一列按鈕可控制第一列的棋盤,因此只須說明第一列按鈕無法使第一列方格成功變色即可,將第一列方格拆開為(n+1)k格與t格(1 < t < n+1),如下圖。因(n+1)k有解, $1\sim n$ 無解,所以 $[(n+1)k+t] \times [(n+1)k+t]$,0 < t < (n+1) 棋盤無解。

1. 當(n+1)k是偶數:

2. 當(n+1)k是奇數:



3. 小結:

- (1)(1,n)變色在 $t \times t$ 棋盤(其中0 < t < n+1)無解
- (2)(1,n)變色僅在 $(n+1) \times (n+1)$ 的倍數棋盤中有解
- (3)(1,n)變色在 $(n+1) \times (n+1)$ 棋盤的最小步數解會具對稱性。

五、說明(1,n)變色在 $(n+1) \times (n+1)$ 棋盤最小步數的上下界

- 1. 根據表(一)可知(1,n)變色在(n+1)×(n+1)棋盤有解,但在同餘的變換上並無找到規律,因此改為由同餘性質求最小步數的上下界。
- 2. 最小步數的下界說明:我們將按鈕兩兩為一組相加(取上下相鄰之兩按鈕),接著再將其加上(n+1),使其變為除以(n+1)之餘數,則必定小於等於最小步數。說明如下:若設任兩個上下相鄰按鈕為 $a \cdot b$,且 $a_0 \cdot b_0$ 分別為其除以(n+1)之餘數 (即為最小步數),並令(a+b)除以(n+1)的餘數為c,如右式

 $\dot{a_0} + b_0 < n + 1$ 是顯然的(兩正數相加不可能為負),而c小於n + 1,又可根據同餘運算得知 $a_0 + b_0 \equiv c$,mod(n+1);當 $a_0 + b_0 \geq n + 1$ 時,c必定小於 $a_0 + b_0$,因此我們取c作為下界。

- 3. 最小步數的上界說明:同2.,在表(一)第s行中的上下相鄰兩按鈕按下次數必為異號,且其和的絕對值為 $|a_{1,s}| = |s|$,又在(1,n)變色中只有n列按鈕,則0 < |a+b| < n+1,0 < $a_0 + b_0 \le 2n-1$,且 $a_0 + b_0 = 2n-1$ 時,a+b必定為 -1,得c=n,又實際按下次數會多n+1,則此時上界為2n+1>2n-1,且 $a_0 \cdot b_0$ 減小時,c也將隨之減小,所以我們取c+n+1為上界。
- 4. 最小步數上下界說明(分為奇數、0(mod4)、2(mod4)三種情形):
- (1)當n為奇數時的下界

圖(一)(1)為(1,5)變色在6×6棋盤的解,求下界時先將上下相鄰的按鈕次數相加,如圖(一)(2),且由前述之點對稱情形,所以除中間那一行外皆須再乘2,且數值還須加上n+1,如圖(一)(2),所以下界為(5+4)×3×2+3×3=63;同上,圖(二)(1)為(1,7)變色在8×8棋盤的解,圖(二)(2)中,除最右邊的那一行外皆須再乘2,且數值還須加上n+1,如圖(二)(3),所以其下界為(7+6+5)×4×2+4×4=160。我們將上述式子分為兩項,分別找出其一般式,不難發現,括號內的項數為 $\frac{n-1}{2}$,每往後一項值會減少1,且首項為n,則其末項為 $n+\frac{n-1}{2}-1=\frac{n+3}{2}$,又每行共有 $\frac{n+1}{2}$ 個相同的數,故加號前式子和的一般式為 $\frac{(n+\frac{n+3}{2})^{\frac{n-1}{2}}}{2}$ × $(n+1)=\frac{3(n+1)^2(n-1)}{8}$,而加號後將為 $(\frac{n+1}{2})^2$,整理後得n為奇數時,下界為: $\frac{(n+1)^2(3n-1)}{8}$ 。

1	-2	3	-4	5
-2	4	-6	8	-10
3	-6	9	-12	15
-4	8	-12	16	-20
5	-10	15	-20	25

$a_{1,1} + a_{2,1} = -1$	$a_{1,2} = -2$	$a_{1,3} + a_{2,3} = -3$	
$a_{3,1} + a_{4,1} = -1$	$a_{2,2} + a_{3,2} = -2$	$a_{3,3} + a_{4,3} = -3$	
$a_{5,1} = -1$	$a_{4,2} + a_{5,2} = -2$	$a_{5,3} = -3$	圖(一)(2)

 $\mathbb{B}(-)(1)$

-1 + 6 = 5	-2 + 6 = 4	-3 + 6 = 3	4	5	
5	4	3	4	5	
5	4	3	4	5	圖(一)(3)

	-4	3	-2	1
	8	-6	4	-2
	-12	9	-6	3
	16	-12	8	-4
	-20	15	-10	5
	24	-18	12	-6
圖(二)(1)	-28	21	-14	7

$a_{1,1} + a_{2,1} = -1$	$a_{1,2} = -2$	$a_{1,3} + a_{2,3} = -3$	$a_{1,4} = -4$	
$a_{3,1} + a_{4,1} = -1$	$a_{2,2} + a_{3,2} = -2$	$a_{3,3} + a_{4,3} = -3$	$a_{2,4} + a_{3,4} = -4$	
$a_{5,1} + a_{6,1} = -1$	$a_{4,2} + a_{5,2} = -2$	$a_{5,3} + a_{6,3} = -3$	$a_{4,4} + a_{5,4} = -4$	
$a_{7.1} = -1$	$a_{6,2} + a_{7,2} = -2$	$a_{7.3} = -3$	$a_{6.4} + a_{7.4} = -4$	圖(二)(2)

-1 + 8 = 7	-2 + 8 = 6	-3 + 8 = 5	-4 + 8 = 4
7	6	5	4
7	6	5	4
7	6	5	4

(2)當n為奇數時的上界:

圖(三)(1)為(1,5)變色在6×6棋盤的解,求上界時先將上下相鄰的按鈕次數相加,如圖(三)(2),且由前述之點對稱情形,所以除了最右邊的那一行外皆須再乘2,且其數值還須加上n+1,如圖(三)(3),再加總起來,得上界為(7+8)×3×2+9×3=117;以此類推,同上,圖(四)(1)為(1,7)變色在8×8棋盤的解,圖(四)(2)中,除最右邊的那一行外皆須再乘2,且數值還須加上n+1,如圖(四)(3),可得其上界為(9+10+11)×4×2+12×4=288。我們將上述式子分為兩項,分別找出其一般式,不難發現,括號內的項數為 $\frac{n-1}{2}$,每往後一項其值會增加1,且首項為n+2,則其末項為 $n+2+\frac{n-3}{2}=\frac{3n+1}{2}$,又每行共有 $\frac{n+1}{2}$ 個相同的數,故在加號前式子和的一般式為: $\frac{(n+2+\frac{3n+1}{2})^{n-1}}{2}$ × $(n+1)=\frac{5(n+1)^2(n-1)}{8}$,而加號後將為 $\frac{3n+3}{2}$ × $\frac{n+1}{2}$,整理過後得知當n為奇數時,其上界為: $\frac{(n+1)^2(5n+1)}{8}$ 。

1	-2	3	-4	5	
-2	4	-6	8	-10	
3	-6	9	-12	15	
-4	8	-12	16	-20	
5	-10	15	-20	25	

$a_{1,1} = 1$	$a_{1,2} + a_{2,2} = 2$	$a_{1,3} = 3$	
$a_{2,1} + a_{3,1} = 1$	$a_{3,2} + a_{4,2} = 2$	$a_{2,3} + a_{3,3} = 3$	
$a_{++} + a_{-+} = 1$	$a_{z,z}=2$	$a_{12} + a_{22} = 3$	圖(三)(2)

								4		
1 + 6 = 7	2	1 + 6 = 8	3 + 6	5 = 9	8		7			
7		8	ç	9	8		7			
7		8	ç)	8		7	圖(三)(3)		
								•		
1		-2			3		-4			
-2		4	-6		-6		8			
3		-6			9		9 -12		-12	
-4		8			-12		16			

-4	8	-12	16	
5	-10	15	-20	
-6	12	-18	24	
7	-14	21	-28	圖(四)(1)
				_
$a_{1,1} = 1$	$a_{1,2} + a_{2,2} = 2$	$a_{1,3} = 3$	$a_{1,4} + a_{2,4} = 4$	

$a_{2,1} + a_{3,1} = 1$	$a_{3,2} + a_{4,2} = 2$	$a_{2,3} + a_{3,3} = 3$	$a_{3,4} + a_{4,4} = 4$	
$a_{4,1} + a_{5,1} = 1$	$a_{5,2} + a_{6,2} = 2$	$a_{4,3} + a_{5,3} = 3$	$a_{5,4} + a_{6,4} = 4$	
$a_{6,1} + a_{7,1} = 1$	$a_{7,2} = 2$	$a_{6,3} + a_{7,3} = 3$	$a_{7,4} = 4$	圖(四)(2)
				•

1 + 8 = 9	2 + 8 = 10	3 + 8 = 11	4 + 8 = 12	
9	10	11	12	
9	10	11	12	
9	10	11	12	圖(四)(3)

(3)接著我們做了0(mod4)、2(mod4)等情況的最小步數上下界,發現 $n \equiv 0$ 時,其最小步數上界為 $\frac{(5n^2+11n+4)n}{8}$,其下界則為 $\frac{(3n+5)n^2}{8}$; $n \equiv 2$ 時,其上界為 $\frac{(5n+6)(n^2+n+2)}{9}$,其下界則為 $\frac{(3n+2)(n+2)(n-1)}{9}$

(4)小結: (1,n)變色在 $(n+1) \times (n+1)$ 棋盤最小步數的上下界:

當
$$n \equiv 0 \pmod{4}$$
:
$$\begin{cases} \text{上界:} \frac{(5n^2+11n+4)n}{8} \\ \text{下界:} \frac{(3n+5)n^2}{8} \end{cases}$$

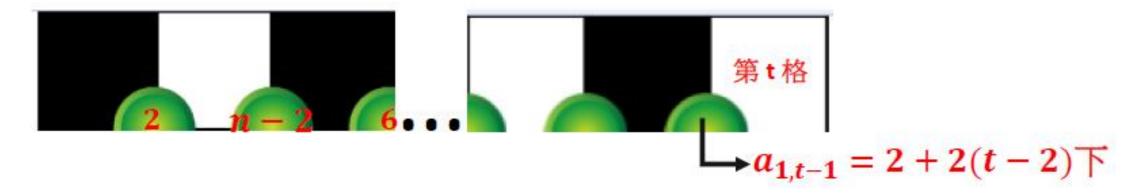
當
$$n \equiv 2 \pmod{4}$$
:
$$\begin{cases} \text{上界:} \frac{(5n+6)(n^2+n+2)}{8} \\ \text{下界:} \frac{(3n+2)(n+2)(n-1)}{8} \end{cases}$$

六、說明(p,n)變色(其中p < n, (p,n) = 1)在不同棋盤中解的情況: (-) 討論(2,n)的情况:

1. 說明(2,n)變色(nn2互質)在 $t \times t(t < n + 2)$ 棋盤的情況下無解

(1)t為偶數:

在t為偶數的情況下,按鈕次數從左而右依序為2,n-2,6,n-6,10,n-10···依序下去,到第t-1個按鈕將會是2+2(t-2)下,但最後 一格是白色,白色格子要按n下才會變成黑色,而且它只能被最後 一個按鈕控制,可得2+2(t-2) \equiv n(mod n+2),但2+2(t-2) 為偶數,又n和2互質,即n為奇數,出現矛盾,故無解。



(2)t為奇數:

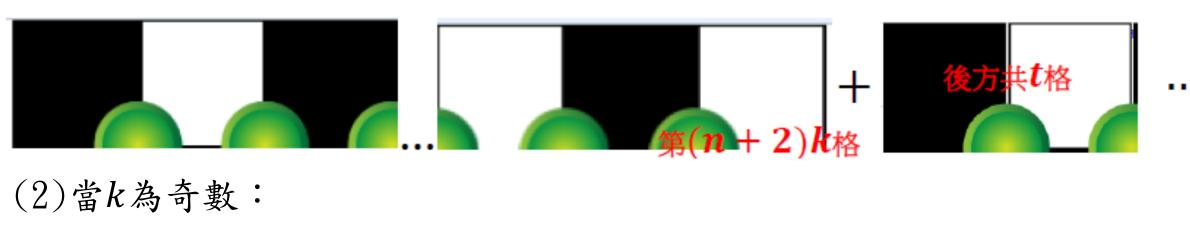
在t為奇數的情況下,到第t-1個按鈕亦會是n-2(t-2)下,而最 後一格是黑色,黑色格子要按2下才會變成白色,而且它只能被最 後一個按鈕控制,可得 $n-2t+4 \equiv 2 \rightarrow n \equiv 2t-2 \pmod{n+2}$, 其中2t-2為偶數,又n為奇數,出現矛盾,故無解。

2. 說明(2,n)變色在 $(n+2) \times (n+2)$ 的情況下有解 我們用與前述相同的方法找到了(2,n)變色在 $(n+2) \times (n+2)$ 的 解,如下表所示(下表為(2,n)變色在 $(n+2) \times (n+2)$ 棋盤的情況)。

$a_{1,1} \equiv 1 \times 2 \equiv 2$	$a_{1,2} \equiv 1 \times (-4) \equiv -4$	$a_{1,3} \equiv 1 \times 6 \equiv 6$		$a_{1,n} \equiv (-1)^{n+1} \times 2n$
$a_{2,1} \equiv -2 \times 2 \equiv -4$	$a_{2,2}\equiv (-2)\times (-4)\equiv 8$	$a_{2,3}\equiv (-2)\times 6\equiv -12$		$a_{2,n} \equiv -2 \times a_{1,n}$
$a_{3,1} \equiv 3 \times 2 \equiv 6$	$a_{3,2}\equiv 3\times (-4)\equiv -12$	$a_{3,3} \equiv 3 \times 6 \equiv 18$		$a_{3,n} \equiv 3 \times a_{1,n}$
$a_{4,1} \equiv -4 \times 2 \equiv -8$	$a_{4,2}\equiv (-4)\times (-4)\equiv 16$	$a_{4,3}\equiv (-4)\times 6\equiv -24$		$a_{4,n} \equiv -4 imes a_{1,n}$
	•••		:	•••
$a_{n,1}\equiv (-1)^{n+1}\times 2n$	$a_{n,2} \equiv a_{n,1} \times (-4) \times \frac{1}{2}$	$a_{n,3} \equiv a_{n,1} \times 6 \times \frac{1}{2}$:	$a_{n,n} \equiv a_{n,1} \times a_{1,n} \times \frac{1}{2}$

- 3. 說明(2,n)變色在 $(n+2)k \times (n+2)k$ 的情況下有解 因 $(n+2)k \times (n+2)k = k^2[(n+2) \times (n+2)]$,故我們可將其視為 k^2 個 $(n+2) \times (n+2)$ 棋盤(-)部分左上角為黑色,一部分左上角是白 色),前述已證明 $(n+2) \times (n+2)$ 棋盤有解(左上角黑色),由同餘關 係亦可知左上角白色之 $(n+2) \times (n+2)$ 棋盤有解,因此可知(2,n)變 色在 $(n+2)k \times (n+2)k$ 棋盤中有解。
- $4.[(n+2)k+t] \times [(n+2)k+t], (t=1\sim n+1)$ 棋盤無解 由於僅第一列按鈕可控制第一列的棋盤,因此只須說明第一列按鈕無 法使第一列方格成功變色即可,所以可將第一列方格拆開為(n+2)k 格與t格 $(t = 1 \sim n + 1)$,其中(n + 2)k有解, $1 \sim n + 1$ 無解,所以 $[(n+2)k+t] \times [(n+2)k+t], (t=1\sim n+1)$ 棋盤無解。

(1)當*k*為偶數:

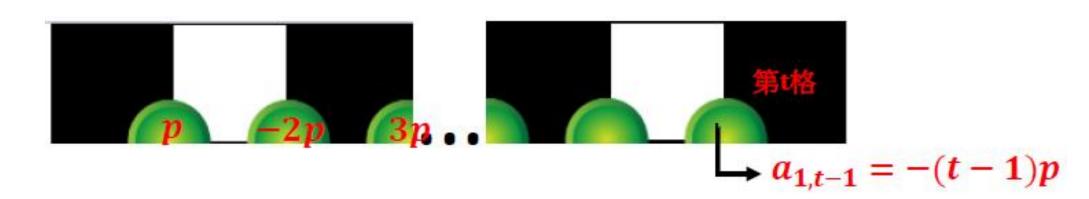


- (二) 討論(p,n)的情況,其中p < n,(p,n) = 1: 1. 說明(p,n)變色在 $t \times t(t < n + p)$ 棋盤的情況下無解
 - 當t是奇數時,第t格的左下方按鈕次數為 -(t-1)p

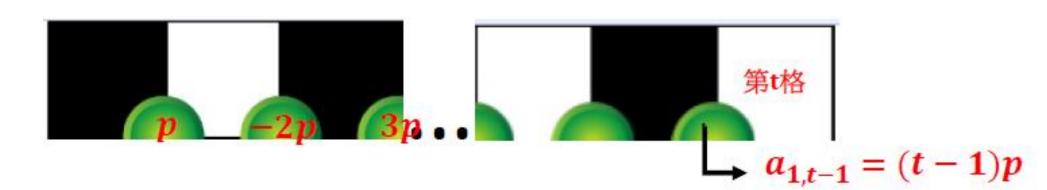
當t是偶數時,第t格的左下方按鈕次數為(t-1)p

我們發現在任何狀況下,第一列的步數的規律會變成:

t為奇數:



t為偶數:



(1)t為偶數的情況

在t為偶數,n+p是奇數的情況下,因為t < n+p,所以最 接近n+p的偶數格為t=n+p-1,根據公式可得此按鈕的 步數為(n+p-1-1)p下,也就是(n+p)p-2p必須同餘n $(n+p)p-2p \equiv n \pmod{n+p} \rightarrow -2p \equiv n \rightarrow 2n \equiv n \rightarrow 2n$ $n \equiv 0 \pmod{n+p}$,與p < n,(p,n) = 1矛盾,故無解。依 此類推,更向前的偶數格會依序減2p次,分別得到 $2n \equiv n$ 、 $4n \equiv n \cdot 6n \equiv n \cdots$,皆是矛盾的,因此此狀況下的所有棋盤 都無解。而在n+p也是偶數的情況下,也有雷同的結果,因 此可知在t為偶數的情況下皆是無解的。

(2)t為奇數的情況

在t為奇數 ,n+p也是奇數的情況下,因為t < n+p,所以 最接近n+p的奇數格為n+p-2,利用公式可得此按鈕的 步數為-(n+p-2-1)p下,也就是-(n+p)p+3p,必同 餘p, 即 $-(n+p)p + 3p \equiv p \rightarrow 3p \equiv p \rightarrow 2p \equiv 0 \pmod{n+p}$, 與p < n,(p,n) = 1矛盾,故無解。依此類推,向前的偶數 格會依序增加2p次,分別得到3p $\equiv p \cdot 5p \equiv p \cdot 7p \equiv p \cdots$, 皆是矛盾的,因此此狀況下的所有棋盤都無解。而在n+p也 是偶數的情況下,也有雷同的結果,因此可知在t為偶數的情 况下皆是無解的。

2. 說明(p,n)變色在 $(n+p) \times (n+p)$ 的情況下有解 將(2,n)變色的結果一般化至(p,n)變色在 $(n+p) \times (n+p)$ 棋 盤的解,如下表:

$a_{1,1} \equiv 1 \times p \equiv p$	$a_{1,2} \equiv 1 \times (-2p) \equiv -2p$	$a_{1,3} \equiv 1 \times 3p \equiv 3p$		$a_{1,n} \equiv (-1)^{n+p-1} \times np$
$a_{2,1} \equiv -2 \times p \equiv -2p$	$a_{2,2}\equiv (-2)(-2p)\equiv 4p$	$a_{2,3} \equiv (-2) \times 3p \equiv -6p$		$a_{2,n} \equiv -2 \times a_{1,n}$
$a_{3,1} \equiv 3 \times p \equiv 3p$	$a_{3,2}\equiv 3\times (-2p)\equiv -6p$	$a_{3,3}\equiv 3\times 3p\equiv 9p$		$a_{3,n} \equiv 3 \times a_{1,n}$
$a_{4,1} \equiv -4 \times p \equiv -4p$	$a_{4,2}\equiv (-4)(-2p)\equiv 8p$	$a_{4,3}\equiv (-4)\times 3p\equiv -12p$		$a_{4,n} \equiv -4 \times a_{1,n}$
$a_{5,1} \equiv 5 \times p \equiv 5p$	$a_{5,2} \equiv 5 \times (-2p) \equiv -10p$	$a_{5,3} \equiv 5 \times 3p \equiv 15p$		$a_{5,n} \equiv 5 \times a_{1,n}$
$a_{6,1} \equiv -6 \times p \equiv -6p$	$a_{6,2}\equiv (-6)(-2p)\equiv 12p$	$a_{6,3} \equiv (-6) \times 3p \equiv -18p$		$a_{6,n} \equiv -6 \times a_{1,n}$
	:	•••		
$a_{n,1} \equiv (-1)^{n+p-1} \times pn$	$a_{n,2} \equiv a_{n,1}(-2p) \times \frac{1}{p}$	$a_{n,3} \equiv a_{n,1} \times 3p \times \frac{1}{p}$		$a_{n,n} \equiv a_{n,1} \times a_{1,n} \times \frac{1}{p}$

3. 說明(p,n)變色僅在 $(n+p)k \times (n+p)k$ 棋盤有解 同(2,n)變色,可將其視為 k^2 個 $(n+p) \times (n+p)$ 棋盤,且不 論左上角為黑色或白色皆有解,因此在 $(n+p)k \times (n+p)k$ 棋 盤有解;而若棋盤的行列非(n+p)的倍數,則必會剩餘t格, $(t=1\sim n+p-1)$,又前述已說明其無解,故可知(p,n)變色 僅在 $(n+p)k \times (n+p)k$ 棋盤有解。

伍、結論

- 一、於(1,2)變色時的解:
- (一)在3×3棋盤中有解,且其最小步數為4步。
- $(二)除3k \times 3k$ 棋盤外皆無解。

二、於(1,n)變色時的解:

- (-)當t < n+1時,在 $t \times t$ 棋盤無解,。
- (二)僅 $(n+1)k \times (n+1)k$ 棋盤有解。
- (三)(1,n)變色在 $(n+1) \times (n+1)$ 棋盤中的解為:

(第一列: $a_{1,n} \equiv (-1)^n \times n \pmod{n+1}$ $\langle \hat{\mathfrak{A}} = (-1)^n \times n \pmod{n+1}$ 其餘按鈕: $a_{m,l} \equiv a_{m,1} \times a_{1,l}$

三、(1,n)變色時的最小步數上下界:

$$(-) 當 n 為奇數: \begin{cases} L \mathbb{R} \frac{(n+1)^2(5n+1)}{8} \\ \mathbb{F} \mathbb{R} \frac{(n+1)^2(3n-1)}{8} \end{cases}$$

$$(-) 當 n \equiv 0 \pmod{4}: \begin{cases} L \mathbb{R} \frac{(5n^2+11n+4)n}{8} \\ \mathbb{F} \mathbb{R} \frac{(3n+5)n^2}{8} \end{cases}$$

$$(-) 當 n \equiv 2 \pmod{4}: \begin{cases} L \mathbb{R} \frac{(5n+6)(n^2+n+2)}{8} \\ \mathbb{F} \mathbb{R} \frac{(3n+2)(n+2)(n-1)}{8} \end{cases}$$

- 四、於(p,n)變色(其中(p,n)=1,p< n)時的解:
- (-)當t < n + p時,在 $t \times t$ 棋盤無解。
- (L)僅 $(n+p)k \times (n+p)k$ 棋盤有解。
- (三)(p,n)變色在 $(n+p) \times (n+p)$ 棋盤中的解為:

第一列:
$$a_{1,z} \equiv (-1)^{z+1} \times pz(modn + p)$$

第一行: $a_{z,1} \equiv (-1)^{z+1} \times pz(modn + p)$
其餘按鈕: $a_{m,l} \equiv a_{m,1} \times a_{1,l} \times \frac{1}{p}(modn + p)$

$a_{1,1} \equiv 1 \times p \equiv p$	$a_{1,2} \equiv 1 \times (-2p) \equiv -2p$		$a_{1,n} \equiv (-1)^{n+p-1} \times np$
$a_{2,1} \equiv -2 \times p \equiv -2p$	$a_{2,2}\equiv (-2)(-2p)\equiv 4p$		$a_{2,n} \equiv -2 \times a_{1,n}$
$a_{3,1} \equiv 3 \times p \equiv 3p$	$a_{3,2}\equiv 3\times (-2p)\equiv -6p$		$a_{3,n} \equiv 3 \times a_{1,n}$
$a_{4,1} \equiv -4 \times p \equiv -4p$	$a_{4,2}\equiv (-4)(-2p)\equiv 8p$		$a_{4,n} \equiv -4 \times a_{1,n}$
$a_{5,1} \equiv 5 \times p \equiv 5p$	$a_{5,2} \equiv 5 \times (-2p) \equiv -10p$		$a_{5,n} \equiv 5 \times a_{1,n}$
•••		:	•
$a_{n,1} \equiv (-1)^{n+p-1} \times pn$	$a_{n,2} \equiv a_{n,1} \times a_{1,2} \times \frac{1}{n}$		$a_{n,n} \equiv a_{n,1} \times a_{1,n} \times \frac{1}{n}$

陸、參考資料

一、同餘的基本概念:

https://reurl.cc/WODpge

二、台灣科教館科學雙月刊63-06,森棚教官數學題

https://reurl.cc/ae16RQ

三、許志農 高中數學2 龍騰版 單元(1)(2)