主題:

今天震了沒-花蓮地區地震災害之探究

投稿類別:國中組 各類議題

作者:

利竹涵。慈大附中。八年大愛班 李沛軒。慈大附中。八年大愛班 曾珮容。慈大附中。八年大愛班 黃于真。慈大附中。八年大愛班

> 指導老師: 官振驤老師

膏、前言

一、研究動機及目的

花東縱谷位於歐亞板塊與菲律賓海板塊交界上,受板塊擠壓影響,地震活動頻繁。其中花蓮市區為花東縱谷人口最為稠密之區域,卻也是地震活動最為密集之區域,經中央氣象局統計今年(2021)至 7 月 30 日止約有超過 2000 起地震活動事件被記錄到,其中芮氏規模大於 4 的地震事件約有 62 起,這段時間的密集地震也不經讓人們想起 2018 年 2 月 6 日花蓮地震的恐懼。

本專題透過文獻收集與實地訪視相關單位,重新認識花蓮地區地震的成因,彙整地震引發的災害及目前地震預警機制,以下為本專題的研究目的:

- (一)探討地震的主要成因及其造成之災害。
- (二)彙整花蓮歷年災害地震事件。
- (三)了解地震預警發展概況及防災措施。
- (四)了解大眾對地震的認知與防災觀念。

二、研究方法及流程

本專題利用搜尋網路資訊、閱讀地震相關書籍等收集地震文獻資料,並透過實地訪視臺灣東部地震研究中心,了解目前地震前兆觀測及預警機制,此外,亦進行地震問卷調查,最後將各項資料彙整與分析並做成結論與建議,以下文本專題研究流程圖。

圖1、研究流程圖

貳、正文

一、認識地震

(一)地震發生的主要成因

地震是指在地殼內釋放能量所造成的震動,可由自然現象如地殼突然運動、火山活動及隕石撞擊引起,亦可由人為活動如地下核武試射造成地震發生。以下為地震發生的主要成因介紹(資料來源:維基百科-地震)。

1.構造地震

因地球不停地運動變化,從地殼內部產生巨大地應力作用。在地應力長期緩慢的作用下,造成地殼的岩層發生彎曲變形,當地應力超過岩石本身能承受的強度時便會使岩層斷裂錯動,其巨大的能量突然釋放,形成構造地震,90%地地震都屬於構造地震(板塊運動)。

2. 火山地震

由於火山活動時岩漿噴發衝擊或熱力作用而引起的地震,稱為火山地震。火山地震數量較小,數量約占地震總數的 7%左右。地震和火山通常存在關聯,火山爆發可能會激發地震,而發生在火山附近的地震也可能引起火山爆發。

3. 陷落地震

由於地下水溶解可溶性岩石(如石灰岩),或由於地下採礦形成的巨大空洞,造成地層崩塌陷落而引發的地震,稱為陷落地震。這類地震約占地震總數的 3%左右,規模也都比較小。

4. 誘發地震

在特定的地區因某種地殼外界因素誘發而引起的地震,稱為誘發地震。這些外界因素可以是地下核爆炸、隕石墜落、油井灌水等,其中最常見的是水庫誘發地震。水庫蓄水後改變了地面的應力狀態,且庫水滲透到已有的斷層中,起到潤滑和腐蝕作用,促使斷層產生滑動。

5. 人工地震

以人為採用強力炸藥直接破壞地殼,藉以測得相關研究數據,或進行礦藏開採,武 器測試等活動。

(二)臺灣的主要地震帶

地震是重大天然災害之一,根據地震資料統計顯示,大多數地震發生在三條主要地帶,分別為包括環太平洋地震帶、歐亞地震帶、中洋脊地震帶,其中又以環太平洋地震帶所發生的地震最多,佔全世界地震總數 70%以上,地震帶分布圖請見圖 2-1(圖片來源:中央氣象局)

圖 2-1、全球地震帶分布圖

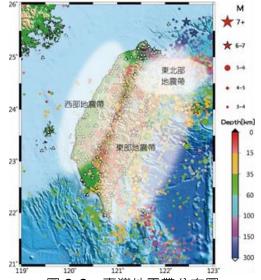


圖 2-2、臺灣地震帶分布圖

臺灣處於環太平洋地震帶上,位於歐亞大陸板塊與菲律賓海板塊交會處,此兩塊板塊每年約以7、8公分的速度,相互聚合碰撞。由於板塊碰撞及隱沒,在臺灣地震發生極為頻繁,根據地震分佈資料,臺灣的地震活躍帶大致可分為西部、東部、及東北部三個地震帶(如圖2-2、臺灣地震帶分布圖,資來源中央氣象局)

1.西部地震帶

整個臺灣西部地區,範圍自臺北南方經臺中、嘉義而至臺南,寬度約80公里,大致與島軸平行。主要是因為板塊碰撞前緣的斷層作用引發地震活動,因此震源深度相對較淺(約10餘公里)。因西部地區人口稠密、工商建設發達,因此當有大地震發生時都會造成較嚴重的災情。

2.東部地震帶

此地震帶之地震係直接肇因於菲律賓海板塊與歐亞板塊碰撞所造成,地震活動頻率最高,通常震源較西部深。其範圍北起宜蘭東北海底向南南西延伸,經過花蓮、成功到臺東,一直延伸至呂宋島,北端自宜蘭與環太平洋地震帶延伸至西太平洋海底,南端幾乎與菲律賓地震帶相接,寬約130公里。

3.東北部地震帶:

此帶係受沖繩海槽擴張作用影響,自蘭陽溪上游附近經宜蘭向東北延伸到琉球群島,屬淺層震源活動地帶,並伴隨有地熱與火山活動現象(龜山島附近)。

(三)地震造成的災害

當大地震發生時,可能會帶來許多嚴重的災害,且以目前科技發展技術,尚無法準確地預測在什麼時候、什麼地點,會發生多大的地震?因此發生時常常讓人措手不及。一般而言,地震造成的災害可分為兩類:一是直接性的,即由斷層錯動,山崩與地裂等之地盤振動及結構物振動所導致的災害;另一種則為間接性的,如堤防或水壩被震壞而引起的水災、維生線遭破壞使瓦斯外洩、電線短路引起火災、或是結構物之附屬物破壞使人傷亡等。常見的地震災害如下所述:

1.地面斷裂:當斷層活動沿著斷層的兩側發生數公分到數公尺的錯動時,就會造成地面破裂、地盤拱起或陷落的情況,地表也會出現規模不一的斷裂。

2.山崩:斷層活動時造成的激烈振動會使鄰近斷層的地區發生大量的山崩,造成災害。

3.岩層液化:地震發生時,強烈的震動會使原本吸附在岩層中的水滲出,使岩層「液化」而變得軟弱,建築物的地基因此失去支撐,容易使建築物產生下沈、傾斜或倒塌的情況。

4.地陷:發生地陷會損壞一個都會區的溝渠、地下水道、河流兩岸的堤防等,甚至導致 海水倒灌,對都會區造成致命的影響。

5.海嘯:當斷層造成海底的地形變化,會攪動海水而形成較長的波浪,並向四周傳布, 當海浪向前推進,將沿海地帶一一淹沒的自然現象,稱之為海嘯。

6.火災:地震時劇烈的地動將會直接破壞如水管、瓦斯管及電線等管線,當外洩的瓦斯若碰上電線走火或其它燃燒的火苗便會引起火,造成災害。

7.**建築物傾毀**:當地震發生時,因地層錯動可能造成房屋倒塌、橋粱斷裂、道路坍方等 災害,導致人員與財物損失。

(四)有關地震的專有名詞(資料來源-中央氣象局)

1.震源:地震錯動的起始點(如圖 2-3)。

2. 震央: 震源在地表的投影點。

3.**震源深度**:震源到震央的垂直距離。依地震的震源深度分為四種地震類型:(1)地震震源深度在 0 至 30 公里者稱為極淺地震;(2)在 30 至 70 公里者稱為淺層地震;(3)在 70 至 300 公里者稱為中層地震;(4)在 300 至 700 公里之地震為深層地震。地震的震

源深度越淺,對地表的破壞力越大。

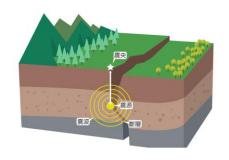


圖 2-3、震源、震央示意圖

4.規模:指地震所釋放能量之大小,以一無單位之實數表示。中央氣象局採用之地震規模,係芮氏(Richter)地震規模。

5.**震度**:指地震發生時一處地表振動之程度,以地表振動加速度之實測值界定之。臺灣 地震震度劃分為 0 至 7 級,震度級以正的整數表示,震度 4 級以上會發布強震 即時警報,通知民眾注意有強震發生。下表為最新地震震度分級表(109 年 1 月 1 日公布)。

表2-1、	地霍霍	度分級表

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
震度分級		人的感受	震度分級		人的感受	
0級	無感	人無感覺。	5弱		大多數人會感到驚嚇恐慌,難以走動。	
1級	微震	人靜止或位於高樓層時可感覺微小搖晃。	5強	強震	幾乎所有的人會感到驚嚇恐慌,難以走 動。	
2級	輕震	大多數的人可感到搖晃,睡眠中的人有部分會醒來。	6弱	烈震	搖晃劇烈以致站立困難。	
3級	弱震	幾乎所有的人都感覺搖晃,有的人會有恐 懼感。	6強	が辰	搖晃劇烈以致無法站穩。	
4級	中震	有相當程度的恐懼感,部分的人會尋求躲 避的地方,睡眠中的人幾乎都會驚醒。	7級	劇震	搖晃劇烈以致無法依意志行動。	

## 二、歷年有感地震統計及花蓮災害性地震

## (一)106-110 年有感地震數量統計

依中央氣象局「有感地震報告發布作業要點」,當地震規模 4.0 以上,且即時地震站 觀測震度達以下情況之一者,應立即發布顯著有感地震報告:1. 任一站之震度達 4 級以 上,或兩站之震度達 3 級以上; 2. 縣(市)政府所在地任一站之震度達 3 級以上,或兩站 震度達 2 級以上; 3. 直轄市市區站之震度達 2 級以上。

每年有感地震發生次數、規模、震度等資料,皆可透過中央氣象局網站查詢,依據中央氣象局近年的觀測資料顯示,臺灣地區平均每年約發生 2 萬次地震,雖然大多為無感地震,但每年平均有感地震發生次數超過 500 次。圖 2-4 為 106-110 年臺灣有感地震數量統計結果,106-110 年間共發生 2,630 起有感地震,其中 107 年有感地震次數超過 1000次,乃因該年度發生 0206 花蓮大地震,且當月份有感地震次數高達 500次;另,近5年平均每年會發生超過3次地震規模6以上的地震。

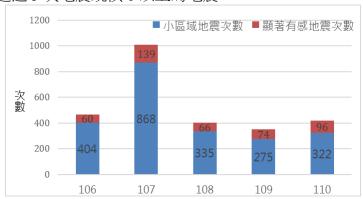



圖 2-4、106-110 年臺灣有感地震數量統計

進一步統計 106-110 年有感地震震央位置,由統計結果發現(圖 2-5 及 2-6),臺灣地震主要發生東部地震帶(約佔 70%),與其位在菲律賓海板塊及歐亞板塊有關。

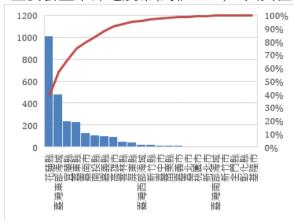



圖 2-5、106-110 年有感地震震央位置統計圖

圖 2-6、106-110 年有感地震震央位置分布圖

### (二)花蓮歷年災害地震統計

臺灣因位於環太平洋地震帶,地震活動頻繁,且曾發生多次災害地震,造成民眾生命威脅與社會經濟損害。根據中央氣象局災害地震紀錄統計,在 1900 年至 2021 年間,共有 103 次災害性地震發生,幾乎每年可能會有一件災害性地震發生;其中,更有 24 次為地震規模達 7.0 以上的強烈地震。而發生在花蓮的災害性地震共計有 27 次,花蓮歷年重大災害地震資訊如下表所示(資料來源 108 年花蓮縣地區災害防救計畫),由統計結果知道,其地震震源深度約在 40 公里內,屬於極淺及淺層地震;而地震規模大多落在 6-7 之間,易造成一定程度的災損,如房屋傾倒、人人死亡或受傷等。

表 2-1、花蓮歷年主要災害地震列表

時間	地點	規模	震源深度	災情簡述
1908.01.11	花蓮	7.3	10	2死,3棟房屋全倒、5棟房屋損毁。
1920.06.05	花蓮東方	8.3	20	5死、20傷,273房屋全倒、1257房屋損壞。

時間	地點	規模	震源深度	災情簡述
1951.10.22	花東縱谷	7.3		68人死亡、856人受傷、2382棟房屋毀損,米崙斷層再度活動,自花蓮港延伸至壽豐東北附近。
1951.11.25	花東縱谷	7.3	16	17人死亡、326人受傷、1589棟房屋毀損,伴生玉里斷層地 震,自瑞穗北方延伸至富里以南,全長約43公里。
1972.04.24	花蓮瑞穗	6.9	30	5人死亡、17人受傷、50棟房屋全倒、98棟房屋損毀。
1986.11.15	花蓮地震	6.8	15	13人死亡、45人受傷、75棟房屋毀損,蘇花及橫貫公路全線中斷,北迴鐵路鐵軌扭曲。
1990.12.13	花蓮	6.5 <b>.</b> 6.7	3	少數人員死傷及多處山崩、路基下陷等災害。
1994.06.05	宜蘭南澳	6.5		1死、2傷、25棟房屋毀損,蘇花公路坍方,中横公路中斷。
2002.03.31	花蓮	6.8	9.6	中横公路落石、蘇花公路坍方。台北市5人死亡、20人受傷。
2004.05.01	花蓮	5.8	17.8	花蓮落石坍方造成蘇花公路、中橫公路交通中斷,並擊中1 輛小貨車,造成2人死亡。
2009.12.19	花蓮	6.9	43.8	東海岸台11線40公里處路段受地震影響,土石坍落、交通中 斷,蘇花公路和中橫公路沿線有零星落石。
2018.02.06	花蓮	6.2	6.3	4棟建物倒塌、17人罹難、295人受傷,同時也造成多處校 園、道路與橋樑受損。

依中央地質研究所調查資料顯示,臺灣目前有 33 條活動斷層,其中花東縱谷有 8 條。於 2018 年 2 月 6 日晚間,在花蓮地區發生芮氏規模 6.26 的地震,震源深度 6.3 公里,此地震是位於板塊隱沒系統的發震構造所引起,造成「米崙斷層」與「嶺頂斷層」沿線地表破裂(20180206 花蓮地震地質調查報告)。米崙斷層屬於呈南北走向,陸地上全長約 8 公里,當時倒塌的雲門翠堤大樓、統帥大飯店、國盛六街民宅,幾處發生地裂的街道都分佈在米崙斷層帶附近。此次地震共造成 17 人死亡,195 戶房屋損毀。

米崙斷層過去就有地震紀錄,1951 年 10 月開始的花東縱谷地震系列,其地震帶綿延 100 多公里,發生錯動的其中一條斷層就是米崙斷層,花蓮在 10 月 22 日該次地震系列測得 3 起規模 7 以上的地震,此次地震造成 68 人死亡、856 人受傷、2382 棟房屋毀損。

#### 三、地震預警與地震觀測發展概況

#### (一)有感地震發布

中央氣象局為監測臺灣之地震活動,建置地震即時監測網,於全國各地建立密集地 震站,24 小時監測臺灣地震活動。當有近地有感地震或較大遠地地震發生時,透過各地 震站送回的地震資料,即時計算出震央位置、震源深度、規模等,發布有感地震報告, 並透過電視台、廣播電台、166、167 語音系統、手機簡訊、網頁訊息、電子郵件通知等 訊息發送方式,使防救災單位與民眾能迅速獲知地震消息。以目前中央氣象局之地震速 報時效,平均約可在地震發生 10 分鐘內,完成有感地震報告製作並對外發布(有感地震發 布流程如圖 2-7,圖片資料來源:中央氣象局)。



圖 2-7、中央氣象局有感地震發布流程圖

## (二)強震即時警報

因目前仍無法準確預測地震發生,面臨地震威脅的國家全力推動地震預警作業。強 震即時警報是指地震已經發生後,利用震央附近地震站測得的早期震波資料,快速計算 出地震規模、位置與深度,並推估各地區之震度與震波到時等資訊,再利用通訊技術(如 網路、手機簡訊、電視台插播等),搶在具威脅性的地震波(S波)到達前,對各地區發 布預估的震度及震波到時等資訊,使救災單位及民眾可以及早因應。雖然強震即時警報 所能爭取的應變時間有限,但若能善加利用仍可發揮很大的功效。強震即時警報發布管 道及各管道警報示意圖(資料來源中央氣象局)。



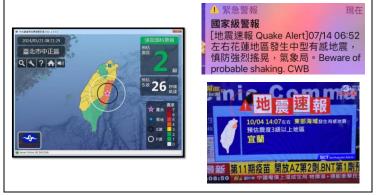



圖 2-8 強震即時警報發布流程

圖 2-9 各管道強震即時警報示意圖

## (三)參訪臺灣東部地震研究中心,了解地震觀測發展概況

為了解目前地震觀測相關資訊及技術,特至臺灣東部地震研究中心進行參訪。藉由 聽取「臺灣東部地震前兆觀測實驗」簡報及參觀「地震前兆觀測實驗園區」,讓我們能 更具體知道目前常用的地震觀測技術及地震預警機制,期待隨著科技及觀測技術的精 進,未來能預測地震的發生,進而提早發出預警降低地震帶來的災損。



聽取中心簡報



簡易地震儀操作



實地踏查地震前兆園區

## 1.臺灣東部地震研究中心簡介

「臺灣東部地震研究中心」位於國立東華大學,其中心功能包括區域地震資料中 心、地震前兆觀測研究中心、地震預警區域中心及地震防災教育中心。配合行政院災害 防救方案下地震前兆觀測平台及整合研究,並結合氣象局於東部的各類觀測站,共同建 置臺灣首座集中式「台灣東部地震前兆觀測實驗場」,提供對花東地區地震最完整而密 集的觀測及研究。

# 2.地震觀測儀器介紹

# 設備/系統名稱 1.EEW 地震預警系統

#### 功能介紹

地震預警系統由 Palert 警報器與 i-touch 顯示器組 成, Palert 警報器為微機電系統 P 波警報器, 可值 測地震 P 波訊息,並在 3 秒內決定是否為災害性地 震,並在具破壞力之 S 波到達前發出警報訊息,以 提供使用者做為現地地震預警,來達到減災之效 果。每座 P-Alert 測站都具有現地預警的功能,亦透 過網路將資料上傳至臺灣大學及中央研究院,進行 資料彙整與分析。

## 2.振盪式震源車



振盪式震源車,可產生來回擺盪的震波(人工震源),利用人工震源發送震波傳入地底,經地層界面反射返回地表後由接收器記錄,再透過處理人員分析震波的傳播時間與波形,得知地底下的岩層構造(反射測震法)

3.GPS 觀測站及地震儀





- (1)GPS 觀測站:可用於偵測微小地形變訊號,以掌握地殼應變累積的時空變化及其與地震活動的相關性,當有大地震發生時,更可精確量測震前、同震與震後變形,進而探討臺灣地殼形變時空變化與地震活動之關聯性,偵測可能之地殼形變地震前兆現象。
- (2)地震儀:觀測當地地震活動,震波由地底傳至地 表的變化、分析盆地效應對震波之影響、探討在 不同地質條件下震波的衰減因子和放大效應。
- 4.電離層觀測站及土壤二氧化碳及氦氣觀測站





- (1)電離層觀測:地底下岩石破裂,釋放出離子溢散 置電離層,透過觀測地震前後電離層的變化,進 而分析地震發生前後的電離層含量差異。
- (2) 土壤二氧化碳及氡氣觀測:因爲地底下岩石破裂 會釋出二氧化碳和氡氣,透過檢測其含量變化, 藉此能更分析地震發生前後其地底氣體含量差 異,進而推估地震發生前兆。

# 四、地震防護注意事項

由於目前科技的發展,尚無法預測大地震什麼時候會發生,因此我們在平常的時候,就應該確實的做好各種地震災前準備及事先地震演練工作,當大地震來臨時,才可以臨危不亂,迅速且正確做好逃生作業,保護自己及家人的生命安全,大大降低地震後帶來的損失。妥善的地震防護主要可分為平時的防災準備、地震時的應變以及地震後的注意事項,其主要重點如下:

## (一)平時的防災準備

- 1.準備緊急避難包,放置於 容易取得處。
- 2.事先製作「家庭防災卡」。
- 3.熟悉瓦斯、電源安全閥開 關方式
- 4.固定住家大型家具、電器 及瓦斯桶。
- 5.了解地震時家中最安全的地方。
- 6.家中應準備救急箱及滅火 器,並告知家人所儲放的地 方,了解使用方法。

#### (二)地震時的應變

- 1.保持鎮定,以「趴下、掩護、穩住」為核心觀念, 隨手抓個墊子等保護頭部,儘速躲在堅固家具、 桌子下。不要慌張地往室 外跑。
- 2.切勿靠近窗戶,以防玻璃 震破。

## (三)地震後的注意事項

- 1.察看周圍的人是否受傷,如有 必要,予以急救。
- 2.檢查家中水、電、瓦斯管線有 無損害,如發現瓦斯管有損, 輕輕將門、窗打開,立即離開 並向有關權責單位報告。
- 3.檢查房屋結構受損情況,儘速 離開受損建築物,疏散時請使 用樓梯。
- 4.儘可能穿著皮鞋、皮靴,以防 震碎的玻璃及碎物弄傷。
- 5.注意餘震之發生並隨時留意災 情報導。

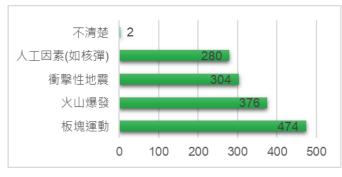
#### 五、地震相關及防災問卷調查結果統計分析

為了瞭解一般民眾對於地震災害及防災的認知程度,本研究針對一般民眾及慈濟大學附中國中部二年級同學,發放地震災害及防災相關知識之問卷進行調查。本次問卷調查採線上

google表單填寫及紙本問卷填寫二方式進行,藉由家長及老師協助轉發線上問卷,以增加問卷的可有效份數。問卷發放時間為2021年09月29日至10月2日,問卷發放總數477份,有效問卷477份,無效問卷0份,回收率為100%。其問卷內容及分析結果如下:

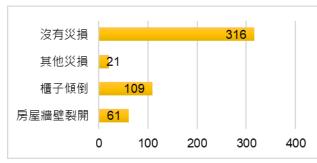
# (一)基本資料分析結果

本次問卷填答者女性為309人,占64.78%,男性為168人,占35.22%;填答者年齡分布以41-50歲最多,占39.83%,其次為31-40歲,占17.19%。填答者目前居住縣市分布,以花蓮縣264人最多,其次為北北基地區104人,中彰投地區56人。




300 264 250 200 150 104 100 56 21 23 6

圖2-9 填答者年齡統計 (二)地震及防災相關之知識調查結果分析


圖2-10 填答者目前居住縣市分布圖

## 1.地震發生的可能原因(本題項可複選)



由統計結果知道,有 99.4%(474 人)的填答者認為板塊運動所造成的地殼變動是造成地震發的主要原因,其次為火山爆發(78.8%),只有 2 位不清楚地震發生原因。因臺灣位處歐亞板塊及菲律賓海板塊,地震發生頻繁,大多數人都認為地震發生主要原因與板塊運動有關。

# 2.請問花蓮 2018 年 2 月 6 日大地震是否有對您家中造成損害(本題項可複選)



由調查結果可知,有 316(66.2%)的填答者,家中未因地震造成災損;而有 109 人(22.9%)家裡因地震造成櫃子傾倒,61 人(12.9%)房屋牆壁因地震瞬間強烈晃動而產生裂痕。由此可知,我們平日應檢視家中各式家具是否牢固,必要時加裝固定器;避免在地震發生時,因劇烈搖晃造成傾倒,而阻擋姚生路線。

#### 3.請問花蓮 2018 年 2 月 6 日大地震發生後當晚您是否有到空曠處避難

由調查結果可知,在 0206 花蓮地震發生後當晚,有 24%(113 人)的填答者至空曠處避難;進一步統計,居住地為花蓮縣的填答者(264 人),有 37.9%(100 人)地震後發生當晚至空曠處避難,顯示當晚地震搖晃程度大且餘震不斷,造成部分民不敢待在室內,選擇至空曠處避難。

## 4.請問您對於花蓮 2018 年 2 月 6 日大地震的感受



由左圖可知有 33%(159 人)的填答者認為花蓮 2018 年 2 月 6 日大地震非常嚴重,有 43.%(205 人)認為嚴重;僅有 2.1%(10 人)認為非常不嚴重。0206 花蓮地震造成 17 人死亡,195 間房屋損毀,為近幾年來重大地震災害之一,由統計結果可知,有近 8 成的填答者認為 0206 花蓮地震嚴重。

## 5. 請問您如何得知地震相關訊息(本題項可複選)



由調查結果顯示,有 94.3%的民眾透過網路、手機得知地震相關訊息;其次是透過電視、或廣播,佔 83.2%。未來可及續透過相關通訊系統及媒體定期宣導地震防災訊息,加深民眾地震防災觀念。

# 6.您是否參加過防災演練

有 74%(353 人)的填答者有參加過防災演練,有 26%(124 人)則沒有參加過防災演練。政府將 9 月 21 日訂為國家防災日,每年會進行「國家防災日地震防災網路宣導活動」,進行地震相關演練;另各級學校及公家機關亦會定期辦理地震演練,讓學生、老師及員工熟悉地震應對措施及逃生路線。

## 7.請問地震來臨時您的應對措施



有 67.7%(323 人)待在原地就地掩護;有 0.2%(1人)的在尖叫;有 21.8%(104人)立刻跑到空 曠處;有 6.7%(32 人)在繼續做自己的事;有 3.4%(17人)有其他應對措施,由結果顯示近 7 成的人先待在原地並找掩護。當地震來臨時,應保持鎮定,以「趴下、掩護、穩住」為核心觀念,躲入堅固的桌子底下,待地震結束後,先大開大門並評估屋內及屋外狀況後,決定避難路線。

#### 8.請問您是否有收過手機的「地震警報」

由結果顯示,有96.2%的民眾有收過手機的「地震警報」。當偵測地震規模5.0以上,且預估震度達4級,即會透過「災防告警細胞廣播訊息系統」(PWS)發布地震速報,當手機收到訊息時,會強制發出警報音效,畫面也會自動同步跳出警示文字,提醒民眾可能有強震發生要做好應變。

9.請問您家中是否備有「緊急救難包」(內容物包含手電筒、乾糧、水、哨子等)

由調查結果知道有 13.2%(63 人) 緊急救難包完全備妥;有 58.9%(281 人)緊急救難包 只準備一些;有 27.9%(133 人)的完全沒準備。

## 10.請問您是否知道社區之避難場所

由調查結果可知,有 52.2%(249 人)知道社區避難場所;亦有 47.8%(228 人)不知道社區避難場所。各地政府均有規劃避難收容處所,一般是以學校、體育館或空曠的公園,

#### 今天震了沒-花蓮地區地震災害之探究

讓民眾在災難發生時,有暫時安置的場所。建議政府機關應持續推廣,讓民眾能清楚知道居住地附近避難所及其查詢方式。

## 11.請問您認為未來是否能預測地震

由調查結果可知,有64.2%(306人)認為未來能預測地震;有35.8%(171人)認為未來不能預測地震。但以目前的科學技術仍無法像天氣預報一樣,預測地震發生的時間與地點,但可透過歷史地震資料與地質斷層調查,來評估幾十年後各地地震發生的可能,讓政府機關或一般民眾在進行公共工程規劃及房屋建造時,避開可能發生大地震的地方。

#### 參、結論

## 一、花東縱谷區地震的主要成因及其造成之災害

花東縱谷的地震多為板塊碰撞隱沒造成,且為發生在深度 10-50 公里極淺層/淺層 地震,這部分的地震容易造成地表破裂與結構物的損害。東部較多山區,容易因地震 震動使土壤鬆軟,造成各類型的山崩地滑土石流事件。

## 二、彙整花蓮歷年災害地震事件統計

發生在花蓮的災害性地震共有 27 次,其中最著名的為 1951 年的花蓮台東地震序列與 2018 年 0206 花蓮地震。前者引發縱谷斷層由北到南的連續破裂,造成極大的災害;後者雖然斷層只破裂到花蓮壽豐地區,但仍造成花蓮市區不少的災害。

#### 三、地震預警發展概況

目前台灣已有成熟的地震預警流程,平均約可在地震發生後 5-10 分鐘,完成有感地震報告製作並對外發布。當地震規模達一定門檻,即發布強震即時警報,通知防災相關單位及民眾,進行相關應變措施。

## 四、地震及防災相關之知識調查結果

從問卷結果得知,大眾對於地震的有初步的認識,但在防災知識上仍需加強,包含緊急救難包的準備與住家附近社區避難場所的位置,而地震發生的當下也應就地掩護,待震動停止後事情況至空曠處避難。未來建議有關單位應加強宣導震避難疏散參考程序,可透過網路、手機或電視媒體定期發送及播放防災相關訊息,讓民眾隨時保持警覺,多一分準備,少一分災害。

## 肆、参考資料

- 1.中央氣象局地震測報中心。https://scweb.cwb.gov.tw/
- 2.內政部消防防災館/下載專區。https://www.tfdp.com.tw/cht/index.php?code=list&ids=157
- 3.臺灣東部地震研究中心。https://etec.ndhu.edu.tw/。
- 4.中央災害防救會報(1041230 災防週報) https://cdprc.ey.gov.tw/
- 5.維基百科-地震。
- 6.潘昌志(2020)。 地震 100 問: 最強圖解 X 超酷實驗 破解一百個不可思議的地科祕密。
- 7.呂特根, 塔布克, 塔沙(2012)。觀念地球科學 II: 地殼·地震。
- 8.火山及地震(1997)。JACQUES-MARIEBARDINTZEFF 著;呂一民譯。
- 9.花蓮縣地區災害防救計畫(108年核定版)
- 10.陳文山、楊志成、楊小青、顔一勤、陳勇全、黃能偉。台灣地區活動斷層的古地震研究。
- 11.地震與防災。中央氣象局地震測報中心。110 年度新聞媒體從業人員氣象資訊宣導說明 會簡報。