

The Traveling Salesman Problem (TSP) and its solving algorithm 旅行推銷員問題與其解法

2015暑期

- ▪Measuring Computational Efficiency
- ▪Traveling Salesman Problem (TSP)
- ▪Construction Heuristics
- ▪Local Search Algorithms


```
Consider the following algorithm
```

```
for(i
=0; i
<n; i++) {
  for(j
=0;j
<m;j++) {
       c[i][j] 
= a[i][j] 
+ b[i][j];
  }
}
```
Total number of operations:

Addition: **(+)** ^m*n + **(++)** ^m*n + **(++)** n => **(2m+1)*n*C 1** Assignments: **(=)** ^m*n + **(=)** n + **(=)** 1 => **(m+1)*n +1*C 2** Comparisons: **(<)** ^m*n + **(<)** n => **(m+1)*n*C 3**

Which one is faster?

▪Running Time

log(*n*) < *n* < *n*² < *n*³ < 2*ⁿ* < 3*ⁿ* < *n*!

polynomial time ≤ exponential

▪Big-O notation

> *f*(*ⁿ*) is O(g(n)) **:** if there is a real number *c* > 0 and an integer constant $n_0 \geq 1$, such that $f\!(\,n) \leq c g\!(\,n)$ for every integer $n \geq n_0.$

▪Examples

> 7 *ⁿ*-2 is O(*n*) 20 *n* 3+10 *ⁿ*log *ⁿ*+5 is O(*n* 3) 2100 is O(1)

Big-O notation

 $O(log(n)) < O(n) < O(n log(n)) < O(n^2) < O(n^3) < O(2^n) < O(3^n)$)

Traveling Salesman Problem (TSP)

√The TSP can be described as the problem of finding the minimum distance route that begins at ^a given node of the network, visits all the members of ^a specified set of nodes exactly once, and returns eventually to the initial node.

Standard Formulation

√ Dantzig, Fulkerson, Johnson (1954) :

Suppose there exists *n* cities, x_{ij} is a link in tour, $i, j \in \{1, 2, ..., n\}$.

the general form

Subtour

- √ Summation of each column (or row) is equal to 1.
- √ However, the subtour may occur:

Yuan Ze University

3

Subtour Elimination

3

The subtour elimination forces the subset of nodes to connect

O(2 *n (***)** *Constraints* = $(2^{n-1} + n - 2)$ **O(** *n* **2** *i* $Variables$ = $n(n-1)$

Only two arcs can be used.

Yuan Ze University

<mark>Ze lobal</mark>
Sz³ Logistics Lab.

_

Subtour Elimination (Equivalent Formulation)

√ Replace subtour elimination constraints with

√ Miller, Tucker, Zemlin (1960):

 u_i = Sequence Number in which city *i* visited for $i = \{2, 3, ..., n\}$

Subtour elimination constraints replaced by

$$
u_i - u_j + nx_{ij} \le n - 1 \ \forall i, j = \{2, 3, ..., n\}
$$

MTZ Formulation

B Yuan Ze University

√ **Avoids subtours but allows total tours (containing city 1)**

Standard Formulation

Lower Bound (LP Relaxation)

LP Relaxation Cost = 878 (Optimal Cost = 881)

MTZ Formulation

Lower Bound (LP Relaxation)

Subtour Constraints Violated : e.g.

 $\boldsymbol{x}_{_{27}} + \boldsymbol{x}_{_{72}} \not\leq 1$

Logic Cuts Violated: e.g.

 $u_{y} \not\geq 1 + x_{z_7} + x_{z_8} - x_{z_7}$

LP Relaxation Cost = 77 3 **3 /5**(Optimal Cost = 881)

Construction Heuristics

- ▪ Greedy Algorithms:
	- ▪Using an index to fix the priority for solving the problem
	- ▪Less flexibility to reach optimal solution
	- ▪Constructing an initial solution for improvement algorithms
- ▪ Example:
	- ▪ Northwest corner and minimum cost matrix for transportation problem

Construction Heuristics

- ▪ Nearest neighbor procedure – O(*n* 2)
- ▪ Nearest insertion – O(*n* 2)

3 Yuan Ze University

- ▪ Furthest insertion – O(*n* 2)
- ▪**Cheapest insertion –** $O(n^3)$

or – O(*n* 2log *n*) (using heap)

Nearest neighbor for TSP

- 1. Start with an arbitrary node *ⁱ* as the beginning of a path.
- 2. Find a unvisited node k closest (minimum c_{jk}) to the last node at current path. Add node *k* to the path.
- 3.Label node *k* as visited node.
- 4. Repeat Step 2 and 3 until all nodes are contained in the path. Then join the first and last nodes

Step 1: Suppose node 1 is chose as beginning.

Step 2: The node 4 is selected such that the path has minimal increase cost $c_{14.}$

Step 3:

- Step 1: Suppose node 1 is chose as beginning.
- Step 2: The node 4 is selected such that the path has minimal increase cost $c_{\scriptscriptstyle{14}}^{}$

Step 3:

Step 1: Suppose node 1 is chose as beginning.

- Step 2: The node 4 is selected such that the path has minimal increase cost $c_{\scriptscriptstyle{14}}^{}$
- Step 3: Node 4 is selected and labeled as visited node.

Step 2: The node 3 is selected such that the path has minimal increase cost $c_{43.}$ Step 3:

Step 2: The node 3 is selected such that the path has minimal increase cost $c_{43.}$

Step 3: Node 3 is selected and labeled as visited node.

Step 2: The node 2 is selected such that that the path has minimal increase cost $c_{32}^{}$

Step 3:

Step 2: The node 2 is selected such that that the path has minimal increase cost $c_{32}^{}$

Step 3: Node 2 is selected and labeled as visited node.

Step 2: Add the only unvisited node 5 to the path. Step 3: Node 5 is selected and labeled as visited node. Step 4:

Step 2: Add the only unvisited node 5 to the path. Step 3: Node 5 is selected and labeled as visited node. Step 4: Link node 5 and node 1 to form a TSP tour.

Nearest insertion for TSP

- 1.Start with a subgraph consisting of node *i* only.
- 2.. Find node k such that c_{ik} is minimal and form the subtour i - k - i
- 3. (Selection) Given a subtour, find node *k* not in the subtour closest to any node in the tour.
- 4. \blacksquare (Insertion) Find the $arc(i, j)$ in the subtour which minimizes $c_{ik} + c_{kj}$ - c_{ij} Insert k between i and j .
- 5.Go to step3 unless we have a Hamiltonian cycle.

Step 1: Suppose node 1 is chose as beginning.

Step 2: The node 4 is selected such that subtour with minimal cost $2c_{14}$

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3 is selected arbitrarily.

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3 is selected arbitrarily.

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3 is selected arbitrarily.

(Selection)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3 is selected arbitrarily.

(Selection)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3 is selected arbitrarily.

(Selection)

(Insertion) arbitrary choose one

362 3145 31421-2: 21-3: 3 1-5:34-2: 4 4(3) 24-5:5**33542222**

Step 3: Node 2 is closest to node 1 in the subtour.

(Selection)

1-2: 21-5: 3 3-2: 3 3-5: 4

4-2: 4 4-5: 5

Step 3: Node 2 is closest to node 1 in the subtour. Node 2 is selected.

Step 4: The selected node 2 is inserted between node 1 and 3 in the subtour with the minimal increasing $cost = 2$.

(Selection)

(Insertion)

1(2) 2 1-5: 3 3-2: 3 3-5: 4 4-2:44-5: 5 **1**

Step 4: The selected node 2 is inserted between node 1 and 3 in the subtour with the minimal increasing $cost = 2$.

(Selection)

(Insertion)

1(2) 2 1-5: 3 3-2: 3 3-5: 4 4-2:44-5: 5

Step 4: The selected node 2 is inserted between node 1 and 3 in the subtour with the minimal increasing $cost = 2$.

(Selection)

Step 4: The selected node 2 is inserted between node 1 and 3 in the subtour with the minimal increasing $cost = 2$.

(Selection)

Step 3: Node 5 is the only choice, so node 5 is selected. Step 4: The selected node 5 is inserted between node 1 and 2 in the subtour with the minimal increasing cost = 2. **(Selection) (Insertion)**

Step 4: The selected node 5 is inserted between node 1 and 2 in the subtour with the minimal increasing $cost = 2$

Step 4: The selected node 5 is inserted between node 1 and 2 in the subtour with the minimal increasing $cost = 2$

Step 4: The selected node 5 is inserted between node 1 and 2 in the subtour with the minimal increasing $cost = 2$

Step 4: The selected node 5 is inserted between node 1 and 2 in the subtour with the minimal increasing cost = 2 and total cost is 3+1+3+2+2 = 11

(Selection)

- ▪ Cheapest insertion for TSP
	- 1.Start with a subroute consisting of node *i* only.
	- 2.Find the $arc(i, j)$ in the subtour and node k, such that $c_{ik} + c_{kj} - c_{ij}$ is minimal. Then, insert *k* between *i* and *j*. (Insertion)
	- 3.Go to step3 unless we have a Hamiltonian cycle.

Step 1: Suppose node 1 is chose as beginning. Step 2: The node 4 is selected such that subtour with minimal cost $2c_{14}^{}$ = 4 $\,$

Step 3: Find node *k* and insert it between node *i* and *j* in the subtour, such that the insertion cost is minimal, where $k{\in}\{2,3,5\}.$

(Insertion Cost)

1-2-4: 3+5-2=6

Insert node 2 into *arc*(1, 4) with the increasing cost $= 6$.

Initial route: 1-4-1

B Yuan Ze University

Heuristic - Cheapest insertion (CI)

Step 3: Testing every enumerations, node 3 is inserted into *arc*(1, 4) with the minimal insertion cost = 3.

Step 3: Testing every enumerations, node 3 is inserted into *arc*(1, 4) with the minimal insertion cost = 3.

Step 3: Find node *k* and insert it between node *i* and *j* in the subtour, such that the insertion cost is minimal, where $k{\in}\{2,5\}.$

(Insertion Cost)

Insert node 2 into *arc*(3, 4) with the increasing $cost = 5$.

3-2-4: 3+4-2=5

Step 3: Testing every enumerations, node 2 is inserted into *arc*(1, 3) with the minimal insertion cost = 2.

1-2-3: 2+3-3=2 M and a strategy 1-5-3: 3+4-3=43-2-4: 3+4-2=53- 5-4: 4+5-2=74-2-1: 4+2-2=44- 5-1: 5+3-2=6

Step 3: Testing every enumerations, node 2 is inserted into *arc*(1, 3) with the minimal insertion cost = 2.

Step 3: Testing every enumerations, node 2 is inserted into *arc*(1, 3) with the minimal insertion cost = 2.

Step 3: Find an *arc* (*ⁱ*, *j*) in the subtour, which has the minimal insertion cost after inserting node 5.

(Insertion Cost)

1- 5-2: 3+1-2=2

Step 3: Testing every arcs, node 5 is inserted into *arc*(1, 2) with the minimal insertion cost = 2.

Step 4: Node 5 is inserted between node 1 and 2 in the subtour and the total cost is $3+1+3+2+2 = 11$

Local Search Algorithms

Local Search Algorithms

- ▪Integer linear programming
- ▪ Combinatorial optimization:
	- ▪Knapsack Problem
	- ▪TSP

Vuan Ze University

▪ Vehicle routing problem (VRP)

Yuan Ze University

S lobal
S Logistics Lab.

4

Local Search Algorithms

- ▪**Neighborhood**
- ▪ Swap
	- The neighborhood size of swapbased local search is *n* (*ⁿ*-1)/2

Local Search Algorithms

Local Search

- Local search starts from a initial solution and then move to neighbor solution iteratively.
	- **•** First improvement.
	- **Best improvement.**

Local Search Algorithms

Local Search for TSP

- 2-opt
- ▪k-opt
- ▪OR-opt

Local Search Algorithms – 2-opt

▪ The neighborhood size of 2-opt is *ⁿ* (*ⁿ*-1)/2 - *n*

Local Search Algorithms – 2-opt

Implementation of 2-opt with array

Local Search Algorithms – Or-opt

▪ The neighborhood size of 2-opt is *ⁿ* (*ⁿ*-1)/2 - *n*

Local Search Algorithms – Or-opt

Implementation of Or-opt with array

TSP問題: 2-opt -練習 ¹

- 1.假設有一個包含10個元素的陣列a[10], 嘗試在不需其他陣 列的幫助下,將這個陣列元素反轉。
- 2.嘗試在不需其他陣列的幫助下,將陣列中a[2]至a[7]的元素 反轉。
- 3.隨機產生兩個介於0-9的變數r1與r2,且此兩個變不可相同, 嘗試在不需其他陣列的幫助下,將陣列中a[r1]至a[r2]的元 素反轉。

TSP問題: 2-opt -練習 ²

延續練習3,隨機產生兩個介於0-9的變數r1與r2,且此兩個 變不可相同,嘗試在不需其他陣列的幫助下,將陣列中a[r1] 至a[r2]的元素反轉。但在作業中需選若選擇的r1與r2使得 | r1-r2 |>|10- (r1-r2) |, 則反轉r1與r2外的陣列範圍, 如圖所 示。

case1: | r1-r2 |<=|10- (r1-r2) |

Metaheuristic (巨集啟發式演算法)

▪Local Optima vs. Global Optima

