
The Traveling Salesman Problem
(TSP) and its solving algorithm
旅行推銷員問題與其解法

2015暑期

ver. 1.0.4

2

Outlines

▪ Measuring Computational Efficiency
▪ Traveling Salesman Problem (TSP)
▪ Construction Heuristics
▪ Local Search Algorithms

3

Measuring Computational Efficiency

Consider the following algorithm

for(i=0; i<n; i++) {
for(j=0;j<m;j++) {

c[i][j] = a[i][j] + b[i][j];
}

}

Total number of operations:
Addition: (+) m*n + (++) m*n + (++) n => (2m+1)*n*C1

Assignments: (=) m*n + (=) n + (=) 1 => (m+1)*n +1*C2

Comparisons: (<) m*n + (<) n => (m+1)*n*C3

4

Measuring Computational Efficiency

Which one is faster?

(a) (b)

5

Measuring Computational Efficiency

▪ Running Time
log(n) < n < n2 < n3 < 2n < 3n <n!

polynomial time exponential≤

6

Measuring Computational Efficiency

▪ Big-O notation
f(n) is O(g(n)) : if there is a real number c > 0 and an integer

constant n0 ≥ 1, such that f(n) ≤ cg(n) for every integer n ≥ n0.
▪ Examples

7n-2 is O(n)
20n3+10nlogn+5 is O(n3)
2100 is O(1)

Measuring Computational Efficiency

▪Big-O notation

O(log(n)) < O(n) < O(n log(n)) <O(n2) < O(n3) <O(2n) <O(3n)

7

logarithmic linear polynomial exponential

O(log n) O(n) O(nk), k ≥1 O(an), a ≥1

8

Traveling Salesman Problem (TSP)

√The TSP can be described as the problem of finding the
minimum distance route that begins at a given node of the
network, visits all the members of a specified set of nodes
exactly once, and returns eventually to the initial node.

2 3

1 4

5

3
5

2

3

2

1

3

2

4

4

Standard Formulation

√ Dantzig, Fulkerson, Johnson (1954) :
Suppose there exists n cities, xij is a link in tour, i, j {1, 2, …, n}.

9

Minimise:

subject to:

n

i

n

j
ijij xc

1 1

1
1

n

i
ijx

1
1

n

j
ijx

 j

 i

1
,

Sx
Sji

ij S {2, 3, …, n}

assignment

subtour elimination

the general form

√ Interpreting the general form of constrains
 General form

 Expression form (n = 4)
Expansion Summation:
x1j + x2j + x3j + x4j = 1 j
Expansion Constraints:
x11 + x21 + x31 + x41 = 1
x12 + x22 + x32 + x42 = 1
x13 + x23 + x33 + x43 = 1
x14 + x24 + x34 + x44 = 1

10

1
1

n

i
ijx j

Subtour

√ Assignment constraints:

√ Summation of each column (or row) is equal to 1.
√ However, the subtour may occur:

11

1
1

n

i
ijx

1
1

n

j
ijx

 j

 i

Salesman travels to node j from exactly one node i.

Salesman travels from node i to exactly one node j

1 0 0 0
0 0 0 1
0 0 1 0

0 1 0 0

xij =
1
1
1

1

sum

1 1 1 1sum

2 3

1 4

Subtour Elimination

12

42

3

O(2n) Constraints = (2n-1 + n –2)
O(n2) Variables = n(n – 1)

Example: x32 + x24 + x43 + x23 + x42 + x43 ≤ 2

Only two arcs can be used.

42

3

This is infeasible.

The subtour elimination forces
the subset of nodes to connect
to other nodes.

1
,

Sx
Sji

ij S {2, 3, …, n}

Subtour Elimination (Equivalent Formulation)

√ Replace subtour elimination constraints with

13

S

_
S

1
,

 SjSi

ijx S {2, 3, …, n}

2 3

1 4

5

_
S

S

This is infeasible.

This constraint also forces
two subsets become a route

_
At least one arc connect S and S

MTZ Formulation

√ Miller, Tucker, Zemlin (1960):

14

ui = Sequence Number in which city i visited for i = {2, 3, …, n}

Subtour elimination constraints replaced by

ui - uj +nxij ≤ n – 1 i, j = {2, 3, …, n}

MTZ Formulation

√ Avoids subtours but allows total tours (containing city 1)

15

Weak, but can add “Logic Cuts”

u2 – u4+ nx24 n-1

u4 – u3+ nx43 n-1

u3 – u2+ nx32 n-1

3n 3(n – 1)

0(n2) Constraints = (n2 – n + 2)
0(n2) Variables = (n – 1) (n + 1)

e.g. uk 1 + xij + xjk + x1j

42

3This is infeasible.

Standard Formulation

16

LP Relaxation Cost = 878
(Optimal Cost = 881)

Lower Bound (LP Relaxation)

MTZ Formulation

17

17227 xx

1779279
1 xxxu

Subtour Constraints Violated : e.g.

Logic Cuts Violated: e.g.

LP Relaxation Cost = 773 3/5
(Optimal Cost = 881)

Lower Bound (LP Relaxation)

18

Construction Heuristics

▪ Greedy Algorithms:
▪ Using an index to fix the priority for solving the problem
▪ Less flexibility to reach optimal solution
▪ Constructing an initial solution for improvement algorithms

▪ Example:
▪ Northwest corner and minimum cost matrix for transportation

problem

19

Construction Heuristics

▪ Nearest neighbor procedure – O(n2)
▪ Nearest insertion – O(n2)
▪ Furthest insertion – O(n2)
▪ Cheapest insertion – O(n3)

or – O(n2logn) (using heap)

20

Heuristic - Nearest Neighbor (NN)

Nearest neighbor for TSP
1. Start with an arbitrary node i as the beginning of

a path.
2. Find a unvisited node k closest (minimum cjk) to

the last node at current path. Add node k to the
path.

3. Label node k as visited node.
4. Repeat Step 2 and 3 until all nodes are contained in

the path. Then join the first and last nodes

21

Heuristic - Nearest Neighbor (NN)

Step 1: Suppose node 1 is chose as beginning.
Step 2: The node 4 is selected such that the path has minimal increase

cost c14.

Step 3:

2 3

1 4

5

3
5

2

3

2

1

3

2

4

4

22

Heuristic - Nearest Neighbor (NN)

Step 1: Suppose node 1 is chose as beginning.
Step 2: The node 4 is selected such that the path has minimal increase

cost c14.

Step 3:

2 3

1 4

5

3

2 3

2

5

3

2

1

4

4

1-2: 2
1-3: 3
1-4: 2
1-5: 3

arbitrary choose one

23

Heuristic - Nearest Neighbor (NN)

Step 1: Suppose node 1 is chose as beginning.
Step 2: The node 4 is selected such that the path has minimal increase

cost c14.

Step 3: Node 4 is selected and labeled as visited node.

2 3

1 4

5

3

2 3

2

5

3

2

1

4

4

1-2: 2
1-3: 3
1-4: 2
1-5: 3

24

Heuristic - Nearest Neighbor (NN)

Step 2: The node 3 is selected such that the path has minimal increase
cost c43.

Step 3:

2 3

1 4

5

3

2 3

2

5

3

2

1

4

4

4-2: 4
4-3: 2
4-5: 5

25

Heuristic - Nearest Neighbor (NN)

Step 2: The node 3 is selected such that the path has minimal increase
cost c43.

Step 3: Node 3 is selected and labeled as visited node.

2 3

1 4

5

3

2 3

2

5

3

2

1

4

4

4-2: 4
4-3: 2
4-5: 5

26

Heuristic - Nearest Neighbor (NN)

Step 2: The node 2 is selected such that that the path has minimal
increase cost c32.

Step 3:

2 3

1 4

5

3

2 3

2

5

3

2

1

4

4

3-2: 3
3-5: 4

27

Heuristic - Nearest Neighbor (NN)

Step 2: The node 2 is selected such that that the path has minimal
increase cost c32.

Step 3: Node 2 is selected and labeled as visited node.

2 3

1 4

5

3

2 3

2

5

3

2

1

4

4

3-2: 3
3-5: 4

28

Heuristic - Nearest Neighbor (NN)

Step 2: Add the only unvisited node 5 to the path.
Step 3: Node 5 is selected and labeled as visited node.
Step 4:

2 3

1 4

5

3

2 3

2

5

3

2

1

4

4

2-5: 1

29

Heuristic - Nearest Neighbor (NN)

Step 2: Add the only unvisited node 5 to the path.
Step 3: Node 5 is selected and labeled as visited node.
Step 4: Link node 5 and node 1 to form a TSP tour.

2 3

1 4

5

3

2 3

2

5

3

2

1

4

4

2-5: 1

30

Heuristic - Nearest insertion (NI)

Nearest insertion for TSP
1. Start with a subgraph consisting of node i only.
2. Find node k such that cik is minimal and form the subtour i-k-i
3. (Selection) Given a subtour, find node k not in the subtour

closest to any node in the tour.
4. (Insertion) Find the arc(i, j) in the subtour which minimizes

cik+ckj-cij Insert k between i and j.
5. Go to step3 unless we have a Hamiltonian cycle.

31

Heuristic - Nearest insertion (NI)

Step 1: Suppose node 1 is chose as beginning.
Step 2: The node 4 is selected such that subtour with minimal cost 2c14

2 3

1 4

5

3

2 3

5

3

2

1

4

4
2

2

32

Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

2 3

1 4

5

3

1

2 2

3

3

5

4

4
2

2

1-2: 2
1-3: 3
1-5: 3

4-2: 4
4-3: 2
4-5: 5

arbitrary choose one
(Selection)

3

3

5

4

33

Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

2 3

1 4

5

3

1

2 2

4
2

2

1-2: 2
1-3: 3
1-5: 3

4-2: 4
4-3: 2
4-5: 5

(Selection)

3

3

5

42 2

3
arbitrary choose one

34

Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

2 3

1 4

5

3

1 4
2

2

1-2: 2
1-3: 3
1-5: 3

4-2: 4
4-3: 2
4-5: 5

(Selection)

3

3

5

4

3

2 2

2

3 2

(Insertion)

1-3-4: 3+2-2=3

35

Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

2 3

1 4

5

3

1 4
2

2

1-2: 2
1-3: 3
1-5: 3

4-2: 4
4-3: 2
4-5: 5

(Selection)

3

3

5

4

3

2 2

2

3 2

(Insertion)

1-3-4: 3+2-2=31-3-4: 3+2-2=3
4-3-1: 3+2-2=3

2

3 2

36

Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

2 3

1 4

5

3

1 4
2

1-2: 2
1-3: 3
1-5: 3

4-2: 4
4-3: 2
4-5: 5

(Selection)

3

3

5

4

3

2 2

(Insertion)

1-3-4: 3+2-2=3
4-3-1: 3+2-2=3

arbitrary choose one

2

3 2

3

1 4

3 2

2

37

Heuristic - Nearest insertion (NI)

Step 3: Node 2 is closest to node 1 in the subtour.

1-2: 2
1-5: 3

(Selection)

3-2: 3
3-5: 4
4-2: 4
4-5: 5

2 3

1 4

5

3

2 3

3

1

5

24

4

2

3

2

3

4

5

4

38

Heuristic - Nearest insertion (NI)

Step 3: Node 2 is closest to node 1 in the subtour. Node 2 is selected.

1-2: 2
1-5: 3

(Selection)

3-2: 3
3-5: 4
4-2: 4
4-5: 5

2 3

1 4

5

3

2 3

3

1

5

24

4

2

3

2

3

4

5

4

2

39

Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the
subtour with the minimal increasing cost = 2.

1-2: 2
1-5: 3

(Selection)

3-2: 3
3-5: 4
4-2: 4
4-5: 5

2 3

1 4

5

3

2 3

3

1

5

24

4

2

(Insertion)

1-2-3: 3+2-3=2

40

Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the
subtour with the minimal increasing cost = 2.

1-2: 2
1-5: 3

(Selection)

3-2: 3
3-5: 4
4-2: 4
4-5: 5

2 3

1 4

5

3

2 3

3

1

5

24

4

2

(Insertion)

1-2-3: 3+2-3=2
3-2-4: 3+4-2=5

41

Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the
subtour with the minimal increasing cost = 2.

1-2: 2
1-5: 3

(Selection)

3-2: 3
3-5: 4
4-2: 4
4-5: 5

2 3

1 4

5

3

2 3

3

1

5

24

4

2

(Insertion)

1-2-3: 3+2-3=2
3-2-4: 3+4-2=5
4-2-1: 2+4-2=4

42

Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the
subtour with the minimal increasing cost = 2.

1-2: 2
1-5: 3

(Selection)

3-2: 3
3-5: 4
4-2: 4
4-5: 5

2 3

1 4

5

3

2 3

3

1

5

24

4

2

(Insertion)

1-2-3: 3+2-3=2
3-2-4: 3+4-2=5
4-2-1: 2+4-2=4

43

Heuristic - Nearest insertion (NI)

Step 3: Node 5 is the only choice, so node 5 is selected.
Step 4: The selected node 5 is inserted between node 1 and 2 in the

subtour with the minimal increasing cost = 2.
(Selection)

2 3

1 4

5

3

2 3

3

1

5

24

4

2

(Insertion)

1-5-2: 3+1-2=2
Only Node 5 can be selected

44

Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2

(Selection)

2 3

1 4

5

3

2 3

3

1

5

24

4

2

(Insertion)

1-5-2: 3+1-2=2
2-5-3: 1+4-2=3

Only Node 5 can be selected

45

Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2

(Selection)

2 3

1 4

5

3

2 3

3

1

5

24

4

2

(Insertion)

1-5-2: 3+1-2=2
2-5-3: 1+4-2=5
3-5-4: 4+5-2=7

Only Node 5 can be selected

46

Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2

(Selection)

2 3

1 4

5

3

2 3

3

1

5

24

4

2

(Insertion)

1-5-2: 3+1-2=2
2-5-3: 1+4-2=5
3-5-4: 4+5-2=7
4-5-1: 3+5-2=6

Only Node 5 can be selected

47

Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2 and total cost is
3+1+3+2+2 = 11

(Selection)

2 3

1 4

5

3

2 3

3

1

5

24

4

2

(Insertion)

1-5-2: 3+1-2=2
2-5-3: 1+4-2=5
3-5-4: 4+5-2=7
4-5-1: 3+5-2=6

Only Node 5 can be selected

48

Heuristic - Cheapest insertion (CI)

▪ Cheapest insertion for TSP
1. Start with a subroute consisting of node i only.
2. Find the arc(i, j) in the subtour and node k, such that cik+ckj-cij

is minimal. Then, insert k between i and j. (Insertion)
3. Go to step3 unless we have a Hamiltonian cycle.

49

Heuristic - Cheapest insertion (CI)

Step 1: Suppose node 1 is chose as beginning.
Step 2: The node 4 is selected such that subtour

with minimal cost 2c14 = 4

2 3

1 4

5

3

2 3

5

3

2

1

4

4
2

2
Initial route: 1-4-1

50

Heuristic - Cheapest insertion (CI)

Step 3: Find node k and insert it between node i and j in the subtour,
such that the insertion cost is minimal, where k{2, 3, 5}.

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2
2

Initial route: 1-4-1

(Insertion Cost)

1-2-4: 3+5-2=6
Insert node 2 into arc(1, 4)
with the increasing cost = 6.

2
2 4

2

51

Heuristic - Cheapest insertion (CI)

Step 3: Testing every enumerations, node 3 is inserted into arc(1, 4)
with the minimal insertion cost = 3.

1 4

5
3 5

3

1 4

3
3 2

2
2 4

2
2

1-2-4: 3+5-2=6
1-3-4: 3+2-2=3
1-5-4: 4+2-2=4
4-2-1: 2+4-2=4
4-3-1: 2+3-2=3
4-5-1: 5+3-2=6

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2
2

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2
2

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2
2

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2
2

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2
2

(Insertion Cost)

52

Heuristic - Cheapest insertion (CI)

Step 3: Testing every enumerations, node 3 is inserted into arc(1, 4)
with the minimal insertion cost = 3.

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2
2

2

3
3

2

Current route

53

Heuristic - Cheapest insertion (CI)

Step 3: Find node k and insert it between node i and j in the subtour,
such that the insertion cost is minimal, where k{2, 5}.

2 3

1 4

5
3

2 3

5

3

1
4
4

2

3
3

2

2 3

4 2(Insertion Cost)

3-2-4: 3+4-2=5
Insert node 2 into
arc(3, 4) with the
increasing cost = 5.

54

Heuristic - Cheapest insertion (CI)

Step 3: Testing every enumerations, node 2 is inserted into arc(1, 3)
with the minimal insertion cost = 2.

2 3

1 4

5
3

2 3

5

3

2
1

4
4

21-2-3: 2+3-3=2
1-5-3: 3+4-3=4
3-2-4: 3+4-2=5
3-5-4: 4+5-2=7
4-2-1: 4+2-2=4
4-5-1: 5+3-2=6

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2

(Insertion Cost)

55

Heuristic - Cheapest insertion (CI)

Step 3: Testing every enumerations, node 2 is inserted into arc(1, 3)
with the minimal insertion cost = 2.

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2

56

Heuristic - Cheapest insertion (CI)

Step 3: Testing every enumerations, node 2 is inserted into arc(1, 3)
with the minimal insertion cost = 2.

2 3

1 4

5

3

2 3

5

3

2

1

4

4

2

57

Heuristic - Cheapest insertion (CI)

Step 3: Find an arc(i, j) in the subtour, which has the minimal insertion
cost after inserting node 5.

2 3

1 4

5

3

2 3

5

3

2

1

4

4

2

1-5-2: 3+1-2=2
(Insertion Cost)

Insert node 5 into arc(1, 2)
with the increasing cost = 2.

58

Heuristic - Cheapest insertion (CI)

Step 3: Testing every arcs, node 5 is inserted into arc(1, 2) with the
minimal insertion cost = 2.

2 3

1 4

5

3

2 3

5

3

2

1

4

4

2

1-5-2: 3+1-2=2
2-5-3: 1+4-3=2
3-5-4: 4+5-2=7
4-5-1: 5+3-2=6

2 3

1 4

5

3

2 3

5

3

2

1

4

4

2

2 3

1 4

5

3

2 3

5

3

2

1

4

4

2

2 3

1 4

5

3

2 3

5

3

2

1

4

4

2

(Insertion Cost)

59

Heuristic - Cheapest insertion (CI)

Step 4: Node 5 is inserted between node 1 and 2 in the subtour and
the total cost is 3+1+3+2+2 = 11

2 3

1 4

5

3

2 3

3

1

5

24

4

2

60

Local Search Algorithms

▪ Simplex method
▪ Convex

▪ Concave

61

Local Search Algorithms

▪ Integer linear programming
▪ Combinatorial optimization:

▪ Knapsack Problem
▪ TSP
▪ Vehicle routing problem

(VRP)

62

Local Search Algorithms

▪ Neighborhood
▪ Swap

The neighborhood size of swap-
based local search is n(n-1)/2

1 2 3 4

2 1 3 4

3 2 1 4

4 2 3 1

1324

4231

1234

1 2 3 4

1 3 2 4

1 4 3 2

1 2 4 3

3214

2134

1243

1432

63

Local Search Algorithms

Local Search
▪ Local search starts from a initial solution and then move to

neighbor solution iteratively.
▪ First improvement.
▪ Best improvement.

s0

neighborhood

s1

s2

s3local optima

current
10

9 8

7

64

Local Search Algorithms

Local Search for TSP
▪ 2-opt
▪ k-opt
▪ OR-opt

65

Local Search Algorithms – 2-opt

▪ The neighborhood size of 2-opt is n (n-1)/2 - n

32 3

1 4

53 5

2 2

32 3

1 4

53 5

43

32 3

1 4

53 5

2 2

2 3

1 4

53

21

2

66

Local Search Algorithms – 2-opt

Implementation of 2-opt with array

67

Local Search Algorithms – Or-opt

▪ The neighborhood size of 2-opt is n (n-1)/2 - n

2 6

1 7

9 8

3 4 5

2 6

1 7

9 8

3 4 5

2 6

1 7

9 8

3 4 5

Yuan Ze University

68

Local Search Algorithms – Or-opt

Implementation of Or-opt with array

1 2 3 4 5 6 7 8 9

2 6

1 7

9 8

3 4 5

2 6

1 7

9 8

3 4 5

2 6

1 7

9 8

3 4 5

1 2 6 7 8 5 4 3 9

1 2 6 7 8 3 4 5 9

Yuan Ze University

TSP問題: 2-opt -練習 1

1.假設有一個包含10個元素的陣列a[10]，嘗試在不需其他陣
列的幫助下，將這個陣列元素反轉。

2.嘗試在不需其他陣列的幫助下，將陣列中a[2]至a[7]的元素
反轉。

3.隨機產生兩個介於0-9的變數r1與r2，且此兩個變不可相同，
嘗試在不需其他陣列的幫助下，將陣列中a[r1]至a[r2]的元
素反轉。

69

1 2 3 4 5 6 7 8 9 10

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

1 2 3 7 6 5 4 8 9 10

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

→

TSP問題: 2-opt -練習 2

延續練習3，隨機產生兩個介於0-9的變數r1與r2，且此兩個
變不可相同，嘗試在不需其他陣列的幫助下，將陣列中a[r1]
至a[r2]的元素反轉。但在作業中需選若選擇的r1與r2使得
| r1-r2 |>|10- (r1-r2) |，則反轉r1與r2外的陣列範圍，如圖所
示。

70

1 2 3 4 5 6 7 8 9 10

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

1 2 3 7 6 5 4 8 9 10

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

→

1 2 3 4 5 6 7 8 9 10

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

→ 2 1 10 4 5 6 7 8 9 3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

case1: | r1-r2 |<=|10- (r1-r2) |

case2: | r1-r2 |>|10- (r1-r2) |

71

Metaheuristic (巨集啟發式演算法)

▪ Local Optima vs. Global Optima

solutions

objective

Local optima
globe otima

