The Traveling Salesman Problem
(TSP) and its solving algorithm

k1T EH S B R B E A7

2015= HH

1,1! , ; A . -‘;iw‘l‘li = : - — ‘ :‘_.'_ 2 :‘ c--,, eg ’Obal .
i T _ - EssE e ¥ Logistics Lab.
7 ;:;:“H i oy OV ‘ '- . ,..‘. ~=_;: i:-

Ouflines

- Measuring Computational Efficiency
- Traveling Salesman Problem (TSP)
= Construction Heuristics

= Local Search Algorithms

i i

Measuring Computational Efficiency

Consider the following algorithm

for(1=0; 1<n; 1++) {
for(Q=0;3<m;j++) {
clilDy] = a1l + bLid1;
¥
¥

Total number of operations:

Addition: (+) m*n + (++) m*n + (++) n => (2m+1)*n*C1
Assignments: (=) m*n + (=) n + (=) 1 => (m+1)*n +1*C2
Comparisons: (<) m*n + (<) n => (mM+1)*n*Cs

4

.

Measuring Computational Efficiency

Which one is faster?

t(ms) H(ms)
70 70 =
u
60 60 |
= Emmnt®
50 1 50 F [] [} | [} |
- m N "
A0y m_u = 40 Tt LI-
[| [] u
g EEN e m
30 1 m migh 30 Wm
m & g =
g m "
- Mg 10 -
O 1 1 1 1 O 1 1 1 1
0 0 40 60 80 100 120 140 5 0 20 40 60 80 100 120 140 5

(a) (b)

. “‘*‘w“ L
. .
- % i s
L &
-

Measuring Computational Efficier

= Running Time
log(n) <n<n?<n3<2"<3n<n!
\ Y J \ v J
polynomial time < exponential

f(n) 3¢ we 12
200

150 r
100 r

50

1L

—log(n).
12 3 4 5 6 7 8§ 910111213 141516 17 1819 2021 2223 2425 n

7 Tobal
¥ Logistics Lab.

Measuring Computational Efficiency

- Big-O notation

f(n) is O(g(n)) : if there is a real number ¢ > 0 and an integer
constant n, 2 1, such that f(n) < cg(n) for every integer n 2 n,,

- Examples
/n-2 is O(n)
20n3+10nlogn+5 is O(n3)
21%0is O(1)

‘ slLa

Measuring Computational Efficiency

-Big-O notation

O(log(n)) < O(n) < O(n log(n)) <O(n?) < O(n?) <O(2") <O(3")

logarithmic |linear | polynomial | exponential

O(logn) | O(n) | O(Y), k>1 | O(a"), a>1

_

.~ . lobal

s -
S

WSalesman Problem (TSP)

S The TSP can be described as the problem of finding the
minimum distance route that begins at a given node of the
network, visits all the members of a specified set of nodes
exactly once, and returns eventually to the initial node.

Standard Formulation

& Dantzig, Fulkerson, Johnson (1954) :

Suppose there exists 7 cities, x; 1s a link in tour, i, €{1, 2, ..., n}.

n

n
Minimise: chyxij

i=1 j=1

. -)
subject to:) x, =1 v j
ZZI - assignment
2% =1 Vi
j-1 J

ny <IS|-1 vSc 2,3, ...n } subtour elimination

a
Logistics Lab.

the general form

4 Interpreting the general form of constrains
» General form

» Expression form (n = 4)
= Expansion Summation:

Xyt Xy g =1
= Expansion Constraints:
Xpp T Xy T X3y T Xy

Xip+ Xy F a3y Ty =1

X3+ X3 T X33 Hxy3=1

‘umba’ e
W Logistics La

Su\btour

& Assignment constraints:

n

le.j =1 vV j Salesman travels to node j from exactly one node i.
i=1
Zx,-j =1 Vi Salesman travels from node i to exactly one node j
j=1

4 Summation of each column (or row) is equal to 1.
4 However, the subtour may occur:

sum

Subtour Elimination

Zx.. <|8|]-1 VSc {23 n The subtour elimination forces
l] — , , o o 0,
i,jeS the subset of nodes to connect
to other nodes.

Example: X3 T X4 T X3+ 203+ Xy T X432

Only two arcs can be used.

O(2") Constraints = Q2"+ n-2)
O(n?) Variables =nn-—1)

Subtour Elimination (equivatent Formulatlon)

4 Replace subtour elimination constraints with @
Yx, 21 VSc{2,3,....n A
ieS,jeS

This is infeasible.

This constraint also forces
two subsets become a route

At least one arc connect S and S

MTZ Formulation

& Miller, Tucker, Zemlin (1960):

u, = Sequence Number in which city i visited for i = {2, 3, ..., n}

Subtour elimination constraints replaced by

u,-u;tnx, < n—1 Vi j= {2, 3, ..., n}

Jlobal
¥ Logistics Lab.

MTZ Formulation

& Avoids subtours but allows total tours (containing city 1)
u, —u,+ nx,, <n-1

u,—u;+nx,;<n-1

$

This is infeasible.

3n<3(n-1)
O(n2) Constraints = (n2-n+2)
0(n2) Variables = (-1 (n+1)

Weak, but can add “Logic Cuts”

eg U2 1 +x,;+xy+x;

‘Standard Formulation

[Lower Bound (LP Relaxation)]

LP Relaxation Cost = 878
(Optimal Cost = 881)

MTZ Formulation

[Lower Bound (LP Relaxation)]

Subtour Constraints Violated : e.g.
X, + X %1

Logic Cuts Violated: e.g.
u z2l+x, +x, —x

17

LP Relaxation Cost= 773 3/,
(Optimal Cost = 881)

Construction Heuristics

- Greedy Algorithms:
- Using an index to fix the priority for solving the problem
- Less flexibility to reach optimal solution
- Constructing an initial solution for improvement algorithms

- Example:

- Northwest corner and minimum cost matrix for transportation
problem

Construction Heuristics

- Nearest neighbor procedure — O(n?)
- Nearest insertion — O(n?)
= Furthest insertion — O(n?)
= Cheapest insertion — O(n3)
or — O(n?logn) (using heap)

—

Heuristic - Nearest Neighbor

(N N) e |

Nearest neighbor for TSP

1. Start with an arbitrary node i as the beginning of
a path.

2. Find a unvisited node £ closest (minimum ¢,) to
the last node at current path. Add node % to the
path.

3. Label node k as visited node.

4. Repeat Step 2 and 3 until all nodes are contained in
the path. Then join the first and last nodes

—

_— 76'0ba’
¥ Logistics Lab.v

Step 1: Suppose node 1 is chose as beginning.

Step 2: The node 4 is selected such that the path has minimal increase
costc,

Step 3:

Heuristic - Nearest Nelghbor (NN

Step 1: Suppose node 1 is chose as beginning.

Step 2: The node 4 is selected such that the path has minimal increase
costc,,

Step 3:

1-
1
1-
1

arbitrary choose one

SE NS

-
-

WNWDN

s lobal

Heuristic - Nearest Neighbor (NN)

Step 1: Suppose node 1 is chose as beginning.

Step 2: The node 4 is selected such that the path has minimal increase
costc,,

Step 3: Node 4 is selected and labeled as visited node.

olobal
Y Logistics Lab, ,

.

Heuristic - Nearest Neighbor (NN)

Step 2: The node 3 is selected such that the path has minimal increase
cost ¢,y

Step 3:

.

Heuristic - Nearest Neighbor (NN)

Step 2: The node 3 is selected such that the path has minimal increase
cost ¢,y

Step 3: Node 3 is selected and labeled as visited node.

4-2: 4

4-3(2).

4-5: 5

Heuristic - Nearest Neighbor (NN)

Step 2: The node 2 is selected such that that the path has minimal
increase cost c;,

Step 3:

Heuristic - Nearest Neighbor (NN)

Step 2: The node 2 is selected such that that the path has minimal
increase cost c;,

Step 3: Node 2 is selected and labeled as visited node.

3-2:@#

3-5: 4 3

A

Heuristic - Nearest Neighbor (NN)

Step 2: Add the only unvisited node 5 to the path.
Step 3: Node 5 is selected and labeled as visited node.

Step 4:

2-5:@@

Heuristic - Nearest Neighbor (NN)

Step 2: Add the only unvisited node 5 to the path.
Step 3: Node 5 is selected and labeled as visited node.
Step 4: Link node 5 and node 1 to form a TSP tour.

2-5:@#

Heuristic - Nearest insertion (NI)

Nearest insertion for TSP
1. Start with a subgraph consisting of node i only.
2. Find node £ such that ¢, is minimal and form the subtour i-k-i

3. (Selection) Given a subtour, find node & not in the subtour
closest to any node in the tour.

4. (Insertion) Find the arc(i, j) in the subtour which minimizes
cytey-¢; Insert k between i and ;.

5. Go to step3 unless we have a Hamiltonian cycle.

. lobal
¥ Logistics Lab.

Step 1: Suppose node 1 is chose as beginning.
Step 2: The node 4 is selected such that subtour with minimal cost 2¢,,

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3

is selected arbitrarily.

(Selection)
arbitrary choose one

224!

1
1-
1-

U'I(JO
w W

lobal
Y Logistics La_b.i v

L

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

(Selection)
arbitrary choose one

Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

(Selection) (Insertion)

1-3-4: 3+2-2=3

Heuristic - Nearest insertion (NI) |

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

(Selection) (Insertion)
1-2: 2 1-3-4: 3+2-2=3
1-3: 3 4-3-1: 3+2-2=3
1-5: 3

75 Iobal —
¥ Logistics Lab.v ,

Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

(Selection) (Insertion)
arbitrary choose one

1-3-4: 3+2-2=3 j@&=
4-3-1: 3+2-2=3

Heuristic - Nearest in

Step 3: Node 2 is closest to node 1 in the subtour.

(Selection)

Step 3: Node 2 is closest to node 1 in the subtour. Node 2 is selected.

(Selection)

m Iobal
¥ Logistics La.b,ﬁ :

Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the
subtour with the minimal increasing cost = 2.

(Selection) (Insertion)

1-2-3: 3+2-3=2

Heuristic - Nearest insertion (Nl)

Step 4: The selected node 2 is inserted between node 1 and 3 in the
subtour with the minimal increasing cost = 2.

(Selection) (Insertion)
12)2 @ 1-2-3: 3+2-3=2
1-5: 3 3-2-4: 3+4-2=5
3-2:3

3-5: 4

4-2: 4

Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the
subtour with the minimal increasing cost = 2.

(Selection) (Insertion)
12)2a 1-2-3: 3+2-3=2
1-5: 3 3-2-4: 3+4-2=5
3-2: 3 4-2-1: 2+4-2=4
3-5:4

4-2: 4

Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the
subtour with the minimal increasing cost = 2.

(Selection) (Insertion)
102« 1-2-3: 3+2-3=2 [¢a
1-5: 3 3-2-4: 3+4-2=5
3-2: 3 4-2-1: 2+4-2=4
3-5: 4

4-2: 4

Heuristic - Nearest insertion (NI) |

Step 3: Node 5 is the only choice, so node 5 is selected.
Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2.

(Selection) (Insertion)

Only Node 5 can be selected

1-5-2: 3+1-2=2

Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2

(Selection) (Insertion)

Only Node 5 can be selected

1-5-2: 3+1-2=2
2-5-3: 1+4-2=3

Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2

(Selection) (Insertion)

Only Node 5 can be selected

1-5-2: 3+1-2=2
2-5-3: 1+4-2=5
3-5-4: 4+5-2=7

Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2

(Selection) (Insertion)

Only Node 5 can be selected

1-5-2: 3+1-2=2
2-5-3: 1+4-2=5
3-5-4: 4+5-2=7
4-5-1: 3+5-2=6

Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2 and total cost is
3+1+3+2+2 = 11

(Selection) (Insertion)

Only Node 5 can be selected

1-5-2: 3+1-2=2 @&
2-5-3: 1+4-2=5
3-5-4: 4+5-2=7
4-5-1: 3+5-2=6

Heuristic - Cheapest insertion (Cl)

o Cheapest insertion for TSP
1. Start with a subroute consisting of node i only.

2. Find the arc(i, j) in the subtour and node £, such that ¢;+c;-c;
is minimal. Then, insert k£ between i and ;. (Insertion)

3. Go to step3 unless we have a Hamiltonian cycle.

¢ lobal

¥ Logistics La_b.m

Heuristic - Cheapest insertion (Cl)

Step 1: Suppose node 1 is chose as beginning.

Step 2: The node 4 is selected such that subtour
with minimal cost 2¢,, =4

Initial route: 1-4-1

Heuristic - Cheapest insertion (CI

Step 3: Find node & and insert it between node i and ; in the subtour,
such that the insertion cost is minimal, where ke {2, 3, 5}.

(Insertion Cost)

1-2-4: 3+5-2=6

Insert node 2 into arc(1, 4)
with the increasing cost = 6.

Initial route: 1-4-1

Step 3: Testing every enumerations, node 3 is inserted into arc(1, 4)
with the minimal insertion cost = 3.

(Insertion Cost)

1-2-4: 3+5-2=6

1-3-4: 3+2-2=3 j@&
1-5-4: 4+2-2=4
4-2-1: 2+4-2=4
4-3-1: 2+3-2=3
4-5-1: 5+3-2=6

® lobal
Y Logistics Lab.

.

Heuristic - Cheapest insertion (Cl)

Step 3: Testing every enumerations, node 3 is inserted into arc(1, 4)
with the minimal insertion cost = 3.

Current route

Step 3: Find node & and insert it between node i and j in the subtour,
such that the insertion cost is minimal, where ke {2, 5}.

(Insertion Cost)

Insert node 2 into

3-0_4: 3+4-2=5 \é? are(3, 4) with the

increasing cost = 5.

Step 3: Testing every enumerations, node 2 is inserted into arc(1, 3)
with the minimal insertion cost = 2.

(Insertion Cost)

1-2-3: 2+3-3=2 @&

1-5-3: 3+4-3=4
3-2-4: 3+4-2=5
3-5-4: 4+5-2=7
4-2-1: 4+2-2=4
4-5-1: 5+3-2=6

-

Heuristic - Cheapest insertion (Cl)

Step 3: Testing every enumerations, node 2 is inserted into arc(1, 3)
with the minimal insertion cost = 2.

.

Heuristic - Cheapest insertion (Cl)

Step 3: Testing every enumerations, node 2 is inserted into arc(1, 3)
with the minimal insertion cost = 2.

.

Heuristic - Cheapest insertion (Cl)
Step 3: Find an arc(i, j) in the subtour, which has the minimal insertion
cost after inserting node 5.

(Insertion Cost)

1-5-2: 3+1-2=2

Insert node 5 into arc(1, 2)
with the increasing cost = 2.

—

Step 3: Testing every arcs, node 5 is inserted into arc(1, 2) with the
minimal insertion cost = 2.

(Insertion Cost)

1-5-2: 3+1-2=2 j@&

2-5-3: 1+4-3=2
3-5-4: 4+5-2=7
4-5-1: 5+3-2=6

L

Heuristic - Cheapest insertion (C

Step 4: Node 5 is inserted between node 1 and 2 in the subtour and
the total cost is 3+1+3+2+2 = 11

- Simplex method
- Convex

= Concave

|. Figure LP-5 '

P

‘ Point C: (3/13, 24/13)

d =
s
7
i
Point D: (3/2, 1)
f/ :
i
0 7 1
P
Point B: (0, 3/2)
Optimal
Corner Point
— > I
. R 3 X, axis
Point A; (D, 0) Point E: (2, ()

Local Search Algorithms

= Integer linear programming

= Combinatorial optimization:
Knapsack Problem
TSP
Vehicle routing problem
(VRP)

.

Local Search Algorithms

- Neighborhood
= Swap

The neighborhood size of swap-
based local search is n(n-1)/2

Local Search Algorithms

Local Search

- Local search starts from a initial solution and then move to
neighbor solution iteratively.

= First improvement.
= Best improvement.

neighllg;l}ood<_ .
-7 DI AGERN

7 VRN \
s 7 PARRN \ AN
/ / \

/
1 1 \
I' cyrrent '%J’Sz. ,
1
v 210 So‘\s1 ¢) /
AN \ 7,633)/
So S~o__y<docal optima

~ e
Se ="

Local Search Algorithms

Local Search for TSP
= 2-opt

= k-opt

= OR-opt

Logistics Lab.

i

Local Search Algorithms — 2-opt

Implementation of 2-opt with array

Local Search Algorithms — Or-opt

- The neighborhood size of 2-optis n (n-1)/2 - n

Yuan Ze University

o — 2010

summenRevised

Local Search Algorithms — Or-opt

Implementation of Or-opt with array

Yuan Ze University

o —— 2010

summenRevised

lobal -
((((((((((((‘Ib (Log:stics Lab.

SR S e e e

TSPREE: 2-opt -4 &

1 BRA—EaS10ETERESa[0] - &5 REE s
§um BT . SR TR -

SAEAFTEMEEIINER T - i’K5FESRa[2] 2a[7]N TR

Jﬁﬂ;i; 0
3&57%?—? ME 7T AS0-9R & Bir1 Er2 - B bR EIEE A Bl 48[E] -

SR EAETEEMESNEB N - &S Falr1]2alr2]8V s
%Jiﬂ;i;o

6(5|4f

al0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[f] al0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

J

TSPRERE: 2-opt -4 & 2

JUEAE AR 3 B?ﬁ%%?* FE 7T hR0-9RY EE Bir1 EAr2 - B It {E
g AOMHE - EFEATEMEESIRER T H—.r|3$§UE:'a[r1]
ia[rZ]EI’JTD%}iE!% BEFRITFEESEENMERERS

| r1-r2 [>[10- (r1-r2) | - RIS EEr1 2225 e 5IZ0E - EFT
7N ©

cae1: | r1-r2 [<=|10- (r1-r2) |

o o 4

a0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] al0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[f]

case2: | r1-r2 |>|10- (r1-r2) |

s 2.1 1 10;§

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

_

Metaheuristic (E£R

= Local Optima vs. Global Optima

objective

Y
Local optima
globe otima

solutions

