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Outlines

▪ Measuring Computational Efficiency
▪ Traveling Salesman Problem (TSP) 
▪ Construction Heuristics
▪ Local Search Algorithms
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Measuring Computational Efficiency

Consider the following algorithm

for(i=0; i<n; i++) {
for(j=0;j<m;j++) {

c[i][j] = a[i][j] + b[i][j];
}

}

Total number of operations:
Addition: (+) m*n + (++) m*n + (++) n => (2m+1)*n*C1

Assignments: (=) m*n + (=) n + (=) 1 => (m+1)*n +1*C2

Comparisons: (<) m*n + (<) n => (m+1)*n*C3
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Measuring Computational Efficiency

Which one is faster?

(a) (b)
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Measuring Computational Efficiency

▪ Running Time
log(n) < n < n2 < n3 < 2n < 3n <n!

polynomial time exponential≤ 
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Measuring Computational Efficiency

▪ Big-O notation
f(n) is O(g(n)) : if there is a real number c > 0 and an integer 

constant n0 ≥ 1, such that f(n) ≤ cg(n) for every integer n ≥ n0.
▪ Examples

7n-2 is O(n)
20n3+10nlogn+5 is O(n3)
2100 is O(1)



Measuring Computational Efficiency

▪Big-O notation

O(log(n)) < O(n) < O(n log(n))  <O(n2) < O(n3) <O(2n) <O(3n)
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logarithmic linear polynomial exponential

O(log n) O(n) O(nk), k ≥1 O(an), a ≥1
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Traveling Salesman Problem (TSP)

√The TSP can be described as the problem of finding the
minimum distance route that begins at a given node of the
network, visits all the members of a specified set of nodes
exactly once, and returns eventually to the initial node.
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Standard Formulation

√ Dantzig, Fulkerson, Johnson (1954) :
Suppose there exists n cities, xij is a link in tour, i, j {1, 2, …, n}.
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Minimise:

subject to:
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subtour elimination



the general form

√ Interpreting the general form of constrains
 General form

 Expression form (n = 4)
Expansion Summation:
x1j + x2j + x3j + x4j = 1                j
Expansion Constraints:
x11 + x21 + x31 + x41 = 1
x12 + x22 + x32 + x42 = 1
x13 + x23 + x33 + x43 = 1
x14 + x24 + x34 + x44 = 1
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Subtour

√ Assignment constraints:

√ Summation of each column (or row) is equal to 1.
√ However, the subtour may occur:

11

1
1




n

i
ijx

1
1




n

j
ijx

 j

 i

Salesman travels to node j from exactly one node i. 

Salesman travels from node i to exactly one node j
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Subtour Elimination
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O(2n) Constraints = (2n-1 + n –2)
O(n2) Variables = n(n – 1)

Example: x32 + x24 + x43 + x23 + x42 + x43 ≤ 2

Only two arcs can be used.
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This is infeasible.

The subtour elimination forces 
the subset of nodes to connect 
to other nodes.
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Subtour Elimination (Equivalent Formulation)

√ Replace subtour elimination constraints with
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MTZ Formulation

√ Miller, Tucker, Zemlin (1960):
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ui =  Sequence Number in which city i visited for i = {2, 3, …, n}

Subtour elimination constraints replaced by

ui - uj +nxij ≤  n – 1  i, j = {2, 3, …,  n}



MTZ Formulation

√ Avoids subtours but allows total tours (containing city 1)
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Weak, but can add “Logic Cuts”

u2 – u4+ nx24  n-1

u4 – u3+ nx43  n-1

u3 – u2+ nx32  n-1

3n  3(n – 1)

0(n2)     Constraints     =      (n2 – n + 2)
0(n2)     Variables         =      (n – 1) (n + 1)

e.g.   uk  1 + xij + xjk + x1j

42

3This is infeasible.



Standard Formulation
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LP Relaxation Cost = 878 
(Optimal Cost = 881)

Lower Bound (LP Relaxation) 



MTZ Formulation
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17227  xx

1779279
1 xxxu 

Subtour Constraints Violated :  e.g.

Logic Cuts Violated: e.g.

LP Relaxation Cost = 773 3/5
(Optimal Cost = 881)

Lower Bound (LP Relaxation) 
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Construction Heuristics

▪ Greedy Algorithms:
▪ Using an index to fix the priority for solving the problem
▪ Less flexibility to reach optimal solution
▪ Constructing an initial solution for improvement algorithms

▪ Example:
▪ Northwest corner and minimum cost matrix for transportation 

problem 
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Construction Heuristics

▪ Nearest neighbor procedure – O(n2)
▪ Nearest insertion – O(n2)
▪ Furthest insertion – O(n2)
▪ Cheapest insertion – O(n3) 

or – O(n2logn) (using heap)
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Heuristic - Nearest Neighbor (NN)

Nearest neighbor for TSP
1. Start with an arbitrary node i as the beginning of 

a path.
2. Find a unvisited node k closest (minimum cjk ) to 

the last node at current path. Add node k to the 
path.

3. Label node k as visited node.
4. Repeat Step 2 and 3 until all nodes are contained in 

the path. Then join the first and last nodes
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Heuristic - Nearest Neighbor (NN)

Step 1: Suppose node 1 is chose as beginning. 
Step 2: The node 4 is selected such that the path has minimal increase 

cost c14.

Step 3:
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Heuristic - Nearest Neighbor (NN)

Step 1: Suppose node 1 is chose as beginning. 
Step 2: The node 4 is selected such that the path has minimal increase 

cost c14.

Step 3:
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1-2: 2
1-3: 3
1-4: 2
1-5: 3

arbitrary choose one
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Heuristic - Nearest Neighbor (NN)

Step 1: Suppose node 1 is chose as beginning. 
Step 2: The node 4 is selected such that the path has minimal increase 

cost c14.

Step 3: Node 4 is selected and labeled as visited node.
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Heuristic - Nearest Neighbor (NN)

Step 2: The node 3 is selected such that the path has minimal increase 
cost c43.

Step 3:
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Heuristic - Nearest Neighbor (NN)

Step 2: The node 3 is selected such that the path has minimal increase 
cost c43.

Step 3: Node 3 is selected and labeled as visited node.
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Heuristic - Nearest Neighbor (NN)

Step 2: The node 2 is selected such that that the path has minimal 
increase cost c32.

Step 3:

2 3

1 4

5

3

2 3

2

5

3

2

1

4

4

3-2: 3
3-5: 4



27

Heuristic - Nearest Neighbor (NN)

Step 2: The node 2 is selected such that that the path has minimal 
increase cost c32.

Step 3: Node 2 is selected and labeled as visited node.
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Heuristic - Nearest Neighbor (NN)

Step 2: Add the only unvisited node 5 to the path.
Step 3: Node 5 is selected and labeled as visited node.
Step 4:
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Heuristic - Nearest Neighbor (NN)

Step 2: Add the only unvisited node 5 to the path.
Step 3: Node 5 is selected and labeled as visited node.
Step 4: Link node 5 and node 1 to form a TSP tour.
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Heuristic - Nearest insertion (NI)

Nearest insertion for TSP
1. Start with a subgraph consisting of node i only.
2. Find node k such that cik is minimal and form the subtour i-k-i
3. (Selection) Given a subtour, find node k not in the subtour

closest to any node in the tour. 
4. (Insertion) Find the arc(i,  j) in the subtour which minimizes 

cik+ckj-cij Insert k between i and j. 
5. Go to step3 unless we have a Hamiltonian cycle.
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Heuristic - Nearest insertion (NI)

Step 1: Suppose node 1 is chose as beginning. 
Step 2: The node 4 is selected such that subtour with minimal cost 2c14
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Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3 
is selected arbitrarily.
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Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3 
is selected arbitrarily.
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Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3 
is selected arbitrarily.
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Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3 
is selected arbitrarily.
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Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3 
is selected arbitrarily.
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Heuristic - Nearest insertion (NI)

Step 3: Node 2 is closest to node 1 in the subtour.

1-2: 2
1-5: 3

(Selection)
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4-5: 5
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Heuristic - Nearest insertion (NI)

Step 3: Node 2 is closest to node 1 in the subtour. Node 2 is selected.

1-2: 2
1-5: 3

(Selection)

3-2: 3
3-5: 4
4-2: 4
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Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the 
subtour with the minimal increasing cost = 2.
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Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the 
subtour with the minimal increasing cost = 2.
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1-2-3: 3+2-3=2
3-2-4: 3+4-2=5
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Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the 
subtour with the minimal increasing cost = 2.
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1-2-3: 3+2-3=2
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4-2-1: 2+4-2=4
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Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the 
subtour with the minimal increasing cost = 2.
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4-2-1: 2+4-2=4



43

Heuristic - Nearest insertion (NI)

Step 3: Node 5 is the only choice, so node 5 is selected.
Step 4: The selected node 5 is inserted between node 1 and 2 in the 

subtour with the minimal increasing cost = 2.
(Selection)
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1-5-2: 3+1-2=2
Only Node 5 can be selected
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Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the 
subtour with the minimal increasing cost = 2

(Selection)
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Only Node 5 can be selected
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Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the 
subtour with the minimal increasing cost = 2

(Selection)
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1-5-2: 3+1-2=2
2-5-3: 1+4-2=5
3-5-4: 4+5-2=7

Only Node 5 can be selected
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Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the 
subtour with the minimal increasing cost = 2

(Selection)

2 3

1 4

5

3

2 3

3

1

5

24

4

2

(Insertion)

1-5-2: 3+1-2=2
2-5-3: 1+4-2=5
3-5-4: 4+5-2=7
4-5-1: 3+5-2=6

Only Node 5 can be selected
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Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the 
subtour with the minimal increasing cost = 2 and total cost is 
3+1+3+2+2 = 11
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1-5-2: 3+1-2=2
2-5-3: 1+4-2=5
3-5-4: 4+5-2=7
4-5-1: 3+5-2=6

Only Node 5 can be selected
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Heuristic - Cheapest insertion (CI)

▪ Cheapest insertion for TSP
1. Start with a subroute consisting of node i only.
2. Find the arc(i, j) in the subtour and node k, such that cik+ckj-cij

is minimal. Then, insert k between i and j. (Insertion)
3. Go to step3 unless we have a Hamiltonian cycle.
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Heuristic - Cheapest insertion (CI)

Step 1: Suppose node 1 is chose as beginning. 
Step 2: The node 4 is selected such that subtour

with minimal cost 2c14 = 4
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Heuristic - Cheapest insertion (CI)

Step 3: Find node k and insert it between node i and j in the subtour, 
such that the insertion cost is minimal, where k{2, 3, 5}.
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1-2-4: 3+5-2=6
Insert node 2 into arc(1, 4)
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Heuristic - Cheapest insertion (CI)

Step 3: Testing every enumerations, node 3 is inserted into arc(1, 4)
with the minimal insertion cost = 3.
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Heuristic - Cheapest insertion (CI)

Step 3: Testing every enumerations, node 3 is inserted into arc(1, 4)
with the minimal insertion cost = 3.
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Heuristic - Cheapest insertion (CI)

Step 3: Find node k and insert it between node i and j in the subtour, 
such that the insertion cost is minimal, where k{2, 5}.
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3-2-4: 3+4-2=5
Insert node 2 into 
arc(3, 4) with the 
increasing cost  = 5. 
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Heuristic - Cheapest insertion (CI)

Step 3: Testing every enumerations, node 2 is inserted into arc(1, 3)
with the minimal insertion cost = 2.
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Heuristic - Cheapest insertion (CI)

Step 3: Testing every enumerations, node 2 is inserted into arc(1, 3)
with the minimal insertion cost = 2.

2 3

1 4

5
3

2 3

5

3

2
1

4
4

2



56

Heuristic - Cheapest insertion (CI)

Step 3: Testing every enumerations, node 2 is inserted into arc(1, 3)
with the minimal insertion cost = 2.
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Heuristic - Cheapest insertion (CI)

Step 3: Find an arc(i, j) in the subtour, which has the minimal insertion 
cost after inserting node 5.
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(Insertion Cost)

Insert node 5 into arc(1, 2)
with the increasing cost  = 2. 
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Heuristic - Cheapest insertion (CI)

Step 3: Testing every arcs, node 5 is inserted into arc(1, 2) with the 
minimal insertion cost = 2.
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Heuristic - Cheapest insertion (CI)

Step 4: Node 5 is inserted between node 1 and 2 in the subtour and 
the total cost is 3+1+3+2+2 = 11
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Local Search Algorithms

▪ Simplex method
▪ Convex

▪ Concave
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Local Search Algorithms

▪ Integer linear programming
▪ Combinatorial optimization:

▪ Knapsack Problem
▪ TSP 
▪ Vehicle routing problem 

(VRP) 
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Local Search Algorithms

▪ Neighborhood
▪ Swap

The neighborhood size of swap-
based local search is n(n-1)/2 
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Local Search Algorithms

Local Search 
▪ Local search starts from a initial solution and then move to 

neighbor solution iteratively.
▪ First improvement.
▪ Best improvement.

s0

neighborhood
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s3local optima
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9 8
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Local Search Algorithms

Local Search for TSP
▪ 2-opt
▪ k-opt
▪ OR-opt
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Local Search Algorithms – 2-opt

▪ The neighborhood size of 2-opt is n (n-1)/2 - n
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Local Search Algorithms – 2-opt

Implementation of 2-opt with array
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Local Search Algorithms – Or-opt

▪ The neighborhood size of 2-opt is n (n-1)/2 - n
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Local Search Algorithms – Or-opt

Implementation of Or-opt with array

1 2 3 4 5 6 7 8 9
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TSP問題: 2-opt -練習 1

1.假設有一個包含10個元素的陣列a[10]，嘗試在不需其他陣
列的幫助下，將這個陣列元素反轉。

2.嘗試在不需其他陣列的幫助下，將陣列中a[2]至a[7]的元素
反轉。

3.隨機產生兩個介於0-9的變數r1與r2，且此兩個變不可相同，
嘗試在不需其他陣列的幫助下，將陣列中a[r1]至a[r2]的元
素反轉。
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1 2 3 4 5 6 7 8 9 10

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

1 2 3 7 6 5 4 8 9 10

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

→



TSP問題: 2-opt -練習 2

延續練習3，隨機產生兩個介於0-9的變數r1與r2，且此兩個
變不可相同，嘗試在不需其他陣列的幫助下，將陣列中a[r1]
至a[r2]的元素反轉。但在作業中需選若選擇的r1與r2使得
| r1-r2 |>|10- (r1-r2) |，則反轉r1與r2外的陣列範圍，如圖所
示。
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1 2 3 4 5 6 7 8 9 10

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

1 2 3 7 6 5 4 8 9 10

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

→

1 2 3 4 5 6 7 8 9 10

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

→ 2 1 10 4 5 6 7 8 9 3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

case1: | r1-r2 |<=|10- (r1-r2) |

case2: | r1-r2 |>|10- (r1-r2) |
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Metaheuristic (巨集啟發式演算法)

▪ Local Optima vs. Global Optima

solutions

objective

Local optima
globe otima


