The Traveling Salesman Problem
(TSP) and its solving algorithm
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Ouflines

- Measuring Computational Efficiency
- Traveling Salesman Problem (TSP)
= Construction Heuristics

= Local Search Algorithms
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Measuring Computational Efficiency

Consider the following algorithm

for(1=0; 1<n; 1++) {
for(Q=0;3<m;j++) {
clilDy] = a1l + bLid1;
¥
¥

Total number of operations:

Addition: (+) m*n + (++) m*n + (++) n => (2m+1)*n*C1
Assignments: (=) m*n + (=) n + (=) 1 => (m+1)*n +1*C2
Comparisons: (<) m*n + (<) n => (mM+1)*n*Cs
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Measuring Computational Efficiency

Which one is faster?
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Measuring Computational Efficier

= Running Time
log(n) <n<n?<n3<2"<3n<n!
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Measuring Computational Efficiency

- Big-O notation

f(n) is O(g(n)) : if there is a real number ¢ > 0 and an integer
constant n, 2 1, such that f(n) < cg(n) for every integer n 2 n,,

- Examples
/n-2 is O(n)
20n3+10nlogn+5 is O(n3)
21%0is O(1)
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Measuring Computational Efficiency

-Big-O notation

O(log(n)) < O(n) < O(n log(n)) <O(n?) < O(n?) <O(2") <O(3")

logarithmic |linear | polynomial | exponential

O(logn) | O(n) | O(Y), k>1 | O(a"), a>1

_
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WSalesman Problem (TSP)

S The TSP can be described as the problem of finding the
minimum distance route that begins at a given node of the
network, visits all the members of a specified set of nodes
exactly once, and returns eventually to the initial node.




Standard Formulation

& Dantzig, Fulkerson, Johnson (1954) :

Suppose there exists 7 cities, x; 1s a link in tour, i, €{1, 2, ..., n}.

n

n
Minimise: chyxij

i=1 j=1

. - )
subject to: ) x, =1 v j
ZZI - assignment
2% =1 Vi
j-1 J

ny <IS|-1 vSc 2,3, ...n } subtour elimination
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the general form

4 Interpreting the general form of constrains
» General form

» Expression form (n = 4)
= Expansion Summation:

Xyt Xy g =1
= Expansion Constraints:
Xpp T Xy T X3y T Xy

Xip+ Xy F a3y Ty =1

X3+ X3 T X33 Hxy3=1
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Su\btour

& Assignment constraints:

n

le.j =1 vV j Salesman travels to node j from exactly one node i.
i=1
Zx,-j =1 Vi Salesman travels from node i to exactly one node j
j=1

4 Summation of each column (or row) is equal to 1.
4 However, the subtour may occur:

sum




Subtour Elimination

Zx.. <|8|]-1 VSc {23 n The subtour elimination forces
l] — , , o o 0,
i,jeS the subset of nodes to connect
to other nodes.

Example: X3 T X4 T X3+ 203+ Xy T X432

Only two arcs can be used.

O(2") Constraints = Q2"+ n-2)
O(n?) Variables =nn-—1)




Subtour Elimination (equivatent Formulatlon)

4 Replace subtour elimination constraints with @
Yx, 21 VSc{2,3,....n A
ieS,jeS

This is infeasible.

This constraint also forces
two subsets become a route

At least one arc connect S and S



MTZ Formulation

& Miller, Tucker, Zemlin (1960):

u, = Sequence Number in which city i visited for i = {2, 3, ..., n}

Subtour elimination constraints replaced by

u,-u;tnx, < n—1 Vi j= {2, 3, ..., n}




Jlobal
¥ Logistics Lab.

MTZ Formulation

& Avoids subtours but allows total tours (containing city 1)
u, —u,+ nx,, <n-1

u,—u;+nx,;<n-1

$

This is infeasible.

3n<3(n-1)
O(n2) Constraints = (n2-n+2)
0(n2) Variables = (-1 (n+1)

Weak, but can add “Logic Cuts”

eg U2 1 +x,;+xy+x;




‘Standard Formulation

[ Lower Bound (LP Relaxation) ]

LP Relaxation Cost = 878
(Optimal Cost = 881)



MTZ Formulation

[ Lower Bound (LP Relaxation) ]

Subtour Constraints Violated : e.g.
X, + X %1

Logic Cuts Violated: e.g.
u z2l+x, +x, —x

17

LP Relaxation Cost= 773 3/,
(Optimal Cost = 881)



Construction Heuristics

- Greedy Algorithms:
- Using an index to fix the priority for solving the problem
- Less flexibility to reach optimal solution
- Constructing an initial solution for improvement algorithms

-  Example:

- Northwest corner and minimum cost matrix for transportation
problem




Construction Heuristics

- Nearest neighbor procedure — O(n?)
- Nearest insertion — O(n?)
= Furthest insertion — O(n?)
= Cheapest insertion — O(n3)
or — O(n?logn) (using heap)

—



Heuristic - Nearest Neighbor

(N N) e |

Nearest neighbor for TSP

1. Start with an arbitrary node i as the beginning of
a path.

2. Find a unvisited node £ closest (minimum ¢, ) to
the last node at current path. Add node % to the
path.

3. Label node k as visited node.

4. Repeat Step 2 and 3 until all nodes are contained in
the path. Then join the first and last nodes

—
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Step 1: Suppose node 1 is chose as beginning.

Step 2: The node 4 is selected such that the path has minimal increase
costc,

Step 3:




Heuristic - Nearest Nelghbor (NN

Step 1: Suppose node 1 is chose as beginning.

Step 2: The node 4 is selected such that the path has minimal increase
costc,,

Step 3:

1-
1
1-
1

arbitrary choose one

SE NS

-
-
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Heuristic - Nearest Neighbor (NN)

Step 1: Suppose node 1 is chose as beginning.

Step 2: The node 4 is selected such that the path has minimal increase
costc,,

Step 3: Node 4 is selected and labeled as visited node.
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Heuristic - Nearest Neighbor (NN)

Step 2: The node 3 is selected such that the path has minimal increase
cost ¢,y

Step 3:
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Heuristic - Nearest Neighbor (NN)

Step 2: The node 3 is selected such that the path has minimal increase
cost ¢,y

Step 3: Node 3 is selected and labeled as visited node.

4-2: 4

4-3(2).

4-5: 5




Heuristic - Nearest Neighbor (NN)

Step 2: The node 2 is selected such that that the path has minimal
increase cost c;,

Step 3:




Heuristic - Nearest Neighbor (NN)

Step 2: The node 2 is selected such that that the path has minimal
increase cost c;,

Step 3: Node 2 is selected and labeled as visited node.

3-2:@#

3-5: 4 3




A

Heuristic - Nearest Neighbor (NN)

Step 2: Add the only unvisited node 5 to the path.
Step 3: Node 5 is selected and labeled as visited node.

Step 4:

2-5:@@




Heuristic - Nearest Neighbor (NN)

Step 2: Add the only unvisited node 5 to the path.
Step 3: Node 5 is selected and labeled as visited node.
Step 4: Link node 5 and node 1 to form a TSP tour.

2-5:@#




Heuristic - Nearest insertion (NI)

Nearest insertion for TSP
1. Start with a subgraph consisting of node i only.
2. Find node £ such that ¢, is minimal and form the subtour i-k-i

3. (Selection) Given a subtour, find node & not in the subtour
closest to any node in the tour.

4. (Insertion) Find the arc(i, j) in the subtour which minimizes
cytey-¢; Insert k between i and ;.

5. Go to step3 unless we have a Hamiltonian cycle.
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Step 1: Suppose node 1 is chose as beginning.
Step 2: The node 4 is selected such that subtour with minimal cost 2¢,,




Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3

is selected arbitrarily.

(Selection)
arbitrary choose one

224!

1
1-
1-
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Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

(Selection)
arbitrary choose one




Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

(Selection) (Insertion)

1-3-4: 3+2-2=3




Heuristic - Nearest insertion (NI) |

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

(Selection) (Insertion)
1-2: 2 1-3-4: 3+2-2=3
1-3: 3 4-3-1: 3+2-2=3
1-5: 3
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Heuristic - Nearest insertion (NI)

Step 3: Node 3 and 2 are closest to node 1 and 4 respectively. Node 3
is selected arbitrarily.

(Selection) (Insertion)
arbitrary choose one

1-3-4: 3+2-2=3 j@&=
4-3-1: 3+2-2=3




Heuristic - Nearest in

Step 3: Node 2 is closest to node 1 in the subtour.

(Selection)




Step 3: Node 2 is closest to node 1 in the subtour. Node 2 is selected.

(Selection)
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Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the
subtour with the minimal increasing cost = 2.

(Selection) (Insertion)

1-2-3: 3+2-3=2




Heuristic - Nearest insertion (Nl)

Step 4: The selected node 2 is inserted between node 1 and 3 in the
subtour with the minimal increasing cost = 2.

(Selection) (Insertion)
12)2 @ 1-2-3: 3+2-3=2
1-5: 3 3-2-4: 3+4-2=5
3-2:3

3-5: 4

4-2: 4




Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the
subtour with the minimal increasing cost = 2.

(Selection) (Insertion)
12)2a 1-2-3: 3+2-3=2
1-5: 3 3-2-4: 3+4-2=5
3-2: 3 4-2-1: 2+4-2=4
3-5:4

4-2: 4




Heuristic - Nearest insertion (NI)

Step 4: The selected node 2 is inserted between node 1 and 3 in the
subtour with the minimal increasing cost = 2.

(Selection) (Insertion)
102« 1-2-3: 3+2-3=2 [¢a
1-5: 3 3-2-4: 3+4-2=5
3-2: 3 4-2-1: 2+4-2=4
3-5: 4

4-2: 4




Heuristic - Nearest insertion (NI) |

Step 3: Node 5 is the only choice, so node 5 is selected.
Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2.

(Selection) (Insertion)

Only Node 5 can be selected

1-5-2: 3+1-2=2




Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2

(Selection) (Insertion)

Only Node 5 can be selected

1-5-2: 3+1-2=2
2-5-3: 1+4-2=3




Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2

(Selection) (Insertion)

Only Node 5 can be selected

1-5-2: 3+1-2=2
2-5-3: 1+4-2=5
3-5-4: 4+5-2=7




Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2

(Selection) (Insertion)

Only Node 5 can be selected

1-5-2: 3+1-2=2
2-5-3: 1+4-2=5
3-5-4: 4+5-2=7
4-5-1: 3+5-2=6




Heuristic - Nearest insertion (NI)

Step 4: The selected node 5 is inserted between node 1 and 2 in the
subtour with the minimal increasing cost = 2 and total cost is
3+1+3+2+2 = 11

(Selection) (Insertion)

Only Node 5 can be selected

1-5-2: 3+1-2=2 @&
2-5-3: 1+4-2=5
3-5-4: 4+5-2=7
4-5-1: 3+5-2=6




Heuristic - Cheapest insertion (Cl)

o Cheapest insertion for TSP
1. Start with a subroute consisting of node i only.

2. Find the arc(i, j) in the subtour and node £, such that ¢;+c;-c;
is minimal. Then, insert k£ between i and ;. (Insertion)

3. Go to step3 unless we have a Hamiltonian cycle.
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Heuristic - Cheapest insertion (Cl)

Step 1: Suppose node 1 is chose as beginning.

Step 2: The node 4 is selected such that subtour
with minimal cost 2¢,, =4

Initial route: 1-4-1




Heuristic - Cheapest insertion (CI

Step 3: Find node & and insert it between node i and ; in the subtour,
such that the insertion cost is minimal, where ke {2, 3, 5}.

(Insertion Cost)

1-2-4: 3+5-2=6

Insert node 2 into arc(1, 4)
with the increasing cost = 6.

Initial route: 1-4-1




Step 3: Testing every enumerations, node 3 is inserted into arc(1, 4)
with the minimal insertion cost = 3.

(Insertion Cost)

1-2-4: 3+5-2=6

1-3-4: 3+2-2=3 j@&
1-5-4: 4+2-2=4
4-2-1: 2+4-2=4
4-3-1: 2+3-2=3
4-5-1: 5+3-2=6
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Heuristic - Cheapest insertion (Cl)

Step 3: Testing every enumerations, node 3 is inserted into arc(1, 4)
with the minimal insertion cost = 3.

Current route




Step 3: Find node & and insert it between node i and j in the subtour,
such that the insertion cost is minimal, where ke {2, 5}.

(Insertion Cost)

Insert node 2 into

3-0_4: 3+4-2=5 \é? are(3, 4) with the

increasing cost = 5.




Step 3: Testing every enumerations, node 2 is inserted into arc(1, 3)
with the minimal insertion cost = 2.

(Insertion Cost)

1-2-3: 2+3-3=2 @&

1-5-3: 3+4-3=4
3-2-4: 3+4-2=5
3-5-4: 4+5-2=7
4-2-1: 4+2-2=4
4-5-1: 5+3-2=6
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Heuristic - Cheapest insertion (Cl)

Step 3: Testing every enumerations, node 2 is inserted into arc(1, 3)
with the minimal insertion cost = 2.
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Heuristic - Cheapest insertion (Cl)

Step 3: Testing every enumerations, node 2 is inserted into arc(1, 3)
with the minimal insertion cost = 2.
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Heuristic - Cheapest insertion (Cl)
Step 3: Find an arc(i, j) in the subtour, which has the minimal insertion
cost after inserting node 5.

(Insertion Cost)

1-5-2: 3+1-2=2

Insert node 5 into arc(1, 2)
with the increasing cost = 2.

—



Step 3: Testing every arcs, node 5 is inserted into arc(1, 2) with the
minimal insertion cost = 2.

(Insertion Cost)

1-5-2: 3+1-2=2 j@&

2-5-3: 1+4-3=2
3-5-4: 4+5-2=7
4-5-1: 5+3-2=6
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Heuristic - Cheapest insertion (C

Step 4: Node 5 is inserted between node 1 and 2 in the subtour and
the total cost is 3+1+3+2+2 = 11




- Simplex method
- Convex

= Concave

|. Figure LP-5 '
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Local Search Algorithms

= Integer linear programming

= Combinatorial optimization:
Knapsack Problem
TSP
Vehicle routing problem
(VRP)
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Local Search Algorithms

- Neighborhood
= Swap

The neighborhood size of swap-
based local search is n(n-1)/2




Local Search Algorithms

Local Search

- Local search starts from a initial solution and then move to
neighbor solution iteratively.

= First improvement.
= Best improvement.

neighllg;l}ood<_ .
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Local Search Algorithms

Local Search for TSP
= 2-opt

= k-opt

= OR-opt
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Local Search Algorithms — 2-opt

Implementation of 2-opt with array




Local Search Algorithms — Or-opt

- The neighborhood size of 2-optis n (n-1)/2 - n

Yuan Ze University

o — 2010

summenRevised




Local Search Algorithms — Or-opt

Implementation of Or-opt with array

Yuan Ze University

o —— 2010

summenRevised
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TSPRERE: 2-opt -4 & 2
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Metaheuristic (E£R

= Local Optima vs. Global Optima

objective

Y
Local optima
globe otima

solutions




