中華國國第八人國中小學科學國第一

國中-物理科

科 別:物理科

組 別:國中組

作品名稱:魔力?摩力!----我的陀螺會倒立

關鍵詞: 陀螺、 摩擦力、 重心偏轉角度

編 號:030107

學校名稱:

臺中市立居仁國民中學

作者姓名:

張孔博、石庭宇、呂柏漢、黃澔珩

指導老師:

魔力?摩力! ---我的陀螺會

摘要

我們從網路上發現一種很有趣的陀螺,這種陀螺旋轉一段時間後,會快速翻轉過來並 倒立旋轉。因此我們分成三部份來分析及探討其原理:一、對原型陀螺的基本物理性質分 析 二、自製陀螺模型模擬分析陀螺倒立的原理 三、以自製倒立陀螺模型驗證倒轉陀螺理 論。我們利用市面上賣的倒轉陀螺、乒乓球、黏土和馬達來進行下列實驗。第一,將買來 的原型陀螺割開,並分析其重心位置、上下比例等構造。第二,用乒乓球和黏土模擬原型 陀螺,改變其上下比例、重量、開口大小和中間段位置來分析陀螺的各種特性。第三,將 乒乓球製成的原型陀螺,放置在馬達上,減少底部之摩擦力以便驗證上述結果。最後發現 陀螺的倒轉和其重心偏移的角度有關。分析的結果顯示:陀螺重心偏下方,所以倒轉後, 重心移到上面,會使重心到陀螺旋轉支點的連線與中心線的夾角角度變小,因此倒立的陀 螺晃動會比較小,比較穩定;而陀螺正轉時,因重心到支點的連線與中心線的夾角角度較 大,造成陀螺旋轉時的晃動也大,因此產生動摩擦力的時間也較長,這正是推動陀螺翻轉 的力量來源。而倒立後,重心到支點的角度較小,不易晃動所以陀螺自然就翻轉過來了。

貳、 研究動機

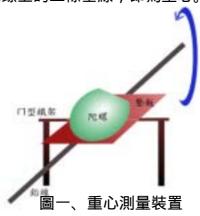
我們在網路上發現一種造型特殊的陀螺,將轉軸向上用正常陀螺的方法旋轉;這種陀 螺在旋轉一段時間之後,會突然的倒立,非常有趣,所以我們想研究它的倒轉原理和會影 響陀螺倒立的變因。

研究目的

- 對原型陀螺的基本物理性質分析。
- 自製陀螺模型模擬分析陀螺倒立的原理
- 以自製倒立陀螺模型驗證陀螺轉倒理論

實驗器材 肆、

倒轉陀螺、尺、鐵絲、線、粗鉛線、乒乓球、黏土、馬達、電池、電線、齒輪、鋼片、變 電器、線鋸、砂紙、剪刀、馬錶


伍、研究方法

一、對原型陀螺的基本性質分析:

測量市面上賣的陀螺之重心,將陀螺切開以便了解。並探討軸心的有無對陀螺有何影響。

- 1. 利用電動線鋸將市面上賣的陀螺切割成兩半,並用砂紙磨平,測量陀螺的基本性質。
- 2. 用尺和線,測量割開後的陀螺的各種尺寸。如圖五。
- 3. 測量陀螺重心:用粗鐵絲製成支架,如圖一。用一條粗的鉛線,量出重心垂直放在支 架上。並在粗鉛線的重心上黏一片墊板,以便放置陀螺。接著,將切成一半的陀螺放 在墊板上測其重心。調整陀螺位置,使整個鉛線保持平衡。 陀螺橫放和直放各測一次,

則鐵架上的橫鐵絲對在陀螺上的二條垂線,即為重心。

二、自製陀螺模型模擬分析陀螺倒立的原理:

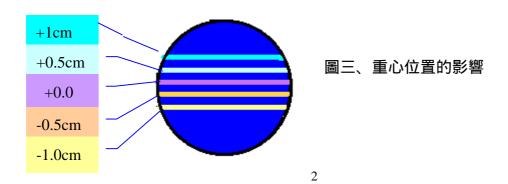
(一)陀螺重量分布比例對倒立時間的影響

- 1. 將 4.0 公分的乒乓球沿 3.6 公分割一圈。
- 2. 將 6 克之黏土分成 1:1; 1:2; 1:3; 2:1; 2:3; 3:1; 3:2; 1:0; 0:1(前項為上圈、後項為下圈)。
- 3. 以陀螺旋轉器使其旋轉,測量其反轉所需時間並觀察其翻轉後的穩定度。

(二) 黏土總重量對倒立時間的影響

- 1. 將 4.0 公分的乒乓球沿 3.6 公分割一圈。
- 2. 做 3 g , 6 g , 9 g , 12 g , 15 g 的黏土 , 上下比則照實驗(一)的最佳比例。
- 3. 以陀螺旋轉器使其旋轉,測量其反轉所需時間並觀察其翻轉後的穩定度。

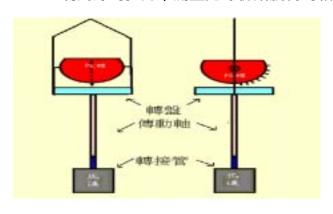
(三)軸心的接觸面積大小對陀螺倒立時間的影響


陀螺規格: 黏土 6 克, 中央 3.6 克, 底部 2.4 克, 球直徑 4 公分 由上往下切的高度分別是 0.4、0.8、1.2、1.6、2.0 公分及未切割之陀螺。如圖二。

以馬達轉動陀螺 2 秒後放開, 使陀螺自轉, 測量-放開後到陀螺翻轉所需的時間, 比較各種 開口大小陀螺翻轉的難易。

(四)重心位置對陀螺倒立時間的影響

陀螺規格:黏土 6 克、中央 3.6 克、底部 2.4 克,離球中線的高度分別為 1.0、0.5、0、-0.5、-1 公分。如圖三。



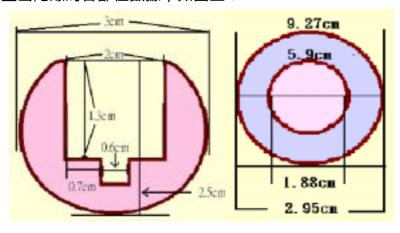
製作上述 5 種陀螺以馬達轉動陀螺 2 秒後放開, 使其自轉, 測量-放開後到陀螺翻轉所需的時間, 比較各種不同重心陀螺翻轉的難易。

三、以自製倒立陀螺模型驗證倒陀螺轉理論:

(一)初始偏轉角度對陀螺的影響:

- 1. 使用乒乓球、細鐵條、四驅車車輪和馬達,了解轉軸初偏轉角度對陀螺倒立的影響。
- 2. 取一黏土重六克,上下比為3:2之原型陀螺,取其垂直於球心與球底直線之直徑交於球表面二點,並鑽孔之,再用口形鐵線穿過,鐵線兩端繫於馬達延長的軸心上。取一線繫於陀螺不和口形鐵線所成的平面通過球表面任意點之表面。如下圖四
- 3. 利用線的拉力,測量陀螺初始旋轉的軸心偏轉對其倒立的影響。

圖四、自製倒立陀螺旋轉模型


(二)重心偏移對陀螺倒轉的影響:

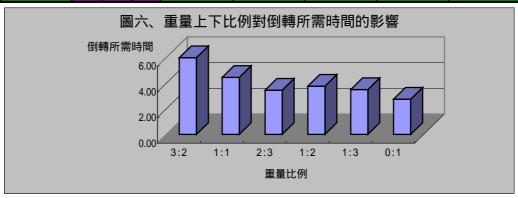
- 一、 取一黏土重六克,上下比 3:2 之原型陀螺,取其垂直於球心與球底的直線交於球表面 兩點並鑽孔之,再用口型鐵線穿過。
- 二、觀察其正轉和倒轉開口邊緣半透明部分的大小表示其穩定度。

伍、 實驗結果

一、原型陀螺的基本性質分析:

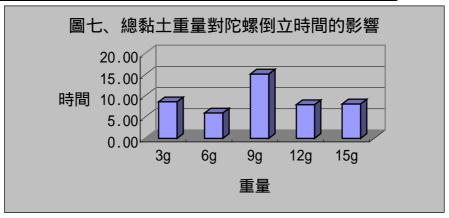
1. 測量出陀螺的各部位數據,如圖五:

圖五、陀螺的物理性 質分析

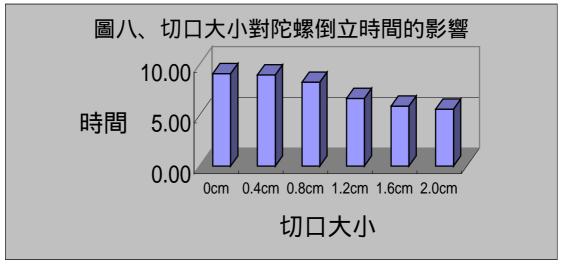

- 2. 將切一半的陀螺平放在桌面,可發現陀螺的底部較傾斜,測量重心位置,可發現, 從陀螺頂端到重心和從重心到陀螺底部的位置比約為 14:11。
- 3. 陀螺轉軸頂端為一圓面。
- 4. 陀螺重量分布在底部和陀螺四周, 陀螺的中央幾乎沒有什麼重量。
- 5. 陀螺表面並非一個球面。
- 6. 要使陀螺翻轉需旋轉到一定速度才能翻轉,但太小力和太大力都很難倒轉。

7. 如果將陀螺上的轉軸拔掉,陀螺亦能倒轉,而且比裝有轉軸的陀螺倒轉所需的時間 更短。但因轉軸被拔掉,因此手較難施力於陀螺。

二、自製陀螺模型模擬分析陀螺倒立的原理:

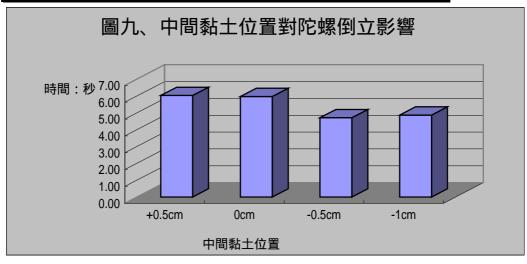

(一)陀螺重量分布比例對倒立時間的影響:

表一、黏:	土中	間和	下面	的上下比		單位:秒				
	1:0	3:1	2:1	3:2	1:1	2:3	1:2	1:3	0:1	
第一次		到 倒		6.56	4.58	3.87	4.36	3.82	3.05	
第二次	不		不	6.16	4.47	3.47	4.01	3.89	2.43	
第三次	倒		倒 倒	l '	6.21	4.31	3.08	3.51	3.19	2.21
第四次	立				5.54	4.64	3.51	3.41	3.26	2.96
第五次	$\overline{\Lambda}$			$\frac{1}{4}$	$\frac{1}{4}$	5.40	4.21	3.26	3.45	3.31
平均				5.97	4.44	3.44	3.75	3.49	2.74	


(二)黏土總重量的影響對倒立時間的影響:

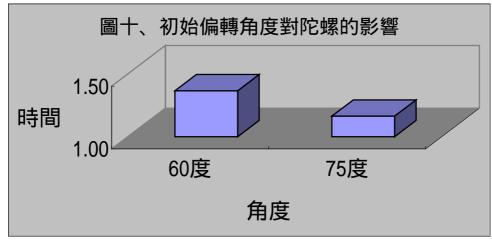
表二、黍	計土質量	單位:秒			
	3g	6g	9g	12g	15g
第一次	8.41	6.56	11.86	7.77	7.65
第二次	7.77	6.16	17.74	8.24	7.21
第三次	8.55	6.21	16.89	10.12	7.79
第四次	8.46	5.54	13.75	7.52	8.34
第五次	9.92	5.40	15.65	6.05	9.55
平均	8.62	5.97	15.18	7.94	8.11

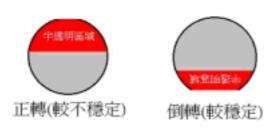
(三)切口大小對陀螺倒立時間的影響


表三、兵乓球之開口大小對倒立所需時間的影響								
	0cm	0.4cm	0.8cm	1.2cm	1.6cm	2.0cm		
第一次	9.11	9.56	7.74	5.33	6.57	6.04		
第二次	9.66	9.16	8.57	6.16	5.33	5.88		
第三次	9.72	9.21	8.73	6.80	5.87	5.08		
第四次	8.73	8.54	7.44	8.15	6.21	5.07		
第五次	8.26	8.40	8.79	6.83	5.54	5.93		
平均	9.10	8.97	8.25	6.65	5.90	5.60		

(四)重心位置對陀螺倒立時間的影響

黏土位置在+0.5 或+1 陀螺開始旋轉一段時間之後,會倒下,但倒下之後又會翻轉回來,因此這邊的數據是它第一次翻下去所需的時間。

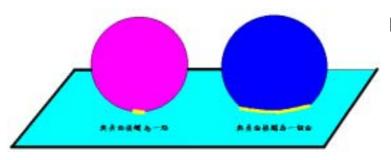

表四、中間黏土上下不同位置 單位:秒								
	+1cm	+0.5cm	0cm	-0.5cm	-1cm			
第一次		5.9	6.56	5.02	4.97			
第二次		6.3	6.16	5.09	4.7			
第三次	不倒立	5.75	6.21	3.99	4.79			
第四次		5.83	5.54	4.86	5.1			
第五次		6.39	5.4	4.61	4.78			
平均		6.03	5.97	4.71	4.87			


三、以自製倒立陀螺模型驗證倒陀螺轉理論:

(一)初始偏轉角度對陀螺的影響:

表五	L、初始偏	轉角度對	單位:秒				
	0度	15度	30度	45度	60度	75度	90度
第一次	不倒立	不倒立	不倒立		0.91	1.32	九十度
第二次					1.15	1.43	
第三次				不倒立	1.43	0.99	以上馬
第四次					1.98	1.02	上翻轉
第五次					1.36	1.06	上油が半寺
平均	不倒立	不倒立	不倒立	不倒立	1.37	1.16	

(二)重心偏移對陀螺倒轉的影響:


圖十一、重心偏移的觀測

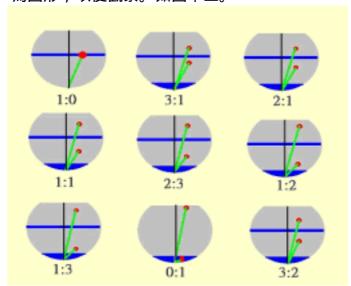
正轉時半透明的部分比倒轉時大,得知正轉比倒轉還不穩定。

陸、討論

一、原型陀螺的基本物理性質分析:

- (一)從陀螺平放在桌面上中,可以知道陀螺的重心偏底部,從陀螺頂端到重心和從重心 到陀螺底部的位置比約為 14:11;而從陀螺的剖面圖中,知道部分陀螺重量分布在 陀螺四周,因此我們可以調整陀螺的重心位置,觀察重心位置對陀螺的影響。
- (二)從發現陀螺轉軸形狀成一圓面中,可推測出陀螺倒立後轉軸接觸桌為一平面時,因 和桌面接觸面為一平面,所以陀螺旋轉倒立後不容易再倒回去;反之,如果轉軸形

圖十二、切口大小的影響


狀成一圓錐,圓錐與桌面接觸只有一點,因此陀螺倒過來後,因重心不穩,很容易 又到回去。如圖十二。

- (三)根據實驗結果,知道如果轉動陀螺力道太大或太小,都不太能使陀螺倒轉。我們推 測如果旋轉力道太小,陀螺與桌面的摩擦力相對很小,沒有達到使陀螺翻轉的力量; 反之如果旋轉力道過大,則可能使陀螺旋轉慣性的力量大於使陀螺倒轉的摩擦力, 因此推測旋轉力道太大太小都不好。
- (四)在實驗中我們將原本的陀螺的轉軸拔除,在用手握住陀螺兩側旋轉,而陀螺依然能 倒轉,因此可知陀螺轉軸的有無,並不會影響其倒轉,而且少了轉軸抵抗桌面的力量,反而更容易倒轉。因此我們後面的實驗中,都將陀螺的轉軸去除,以便觀察陀 螺倒轉的情形,而且這樣也有利於使用馬達旋轉器旋轉陀螺。

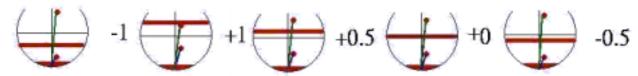
二、自製陀螺模型模擬分析陀螺倒立的原理:

(一)陀螺重量分布比例對倒立時間的影響

根據實驗結果,我們發現 0:1 的陀螺翻轉所需時間最短。我們推測是因為 0:1 正轉和倒轉的重心到支點與軸心構成的角度差最大,所以容易倒轉。但又因倒轉後重心提高,等到轉動能量減小後無法抵抗重力而倒下。故我們選擇以最難翻轉的 3:2 陀螺為圓形,以便觀察。如圖十三。

圖十三、重量分布對重心的 影響

(二) 黏土總重量的影響對倒立時間的影響


根據實驗結果,我們發現黏土重量為6克時,最容易翻轉。因為正向力大小影響了摩擦力的大小,黏土的重量又影響了正向力的大小,所以重量越大正向力越大摩擦力也越大,越容易翻轉,但是桌面材質一定,因此正向力大到一定程度時,摩擦力就不會跟著等比例增加,摩擦力提供的能量不足以抵抗正向力,所以如果黏土重量太大,反而會使陀螺難以翻轉。

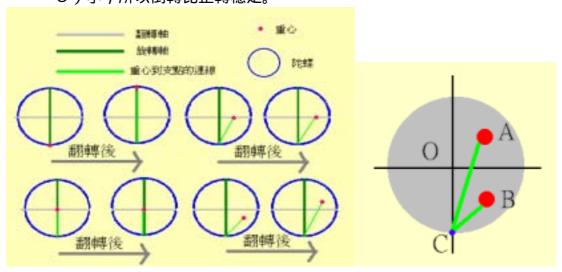
(三)切口大小對陀螺倒立時間的影響

從陀螺切口大小實驗中,陀螺切口大時,因為旁邊的弧面減少,所需翻轉的路程也減少,所以很快就會因開口為一個面的原因而翻轉過來,且因開口大,過陀螺剖面切口兩端點的切線到桌面的角度大,所以很難再翻回來;反之如果開口小時弧面較大,所需翻轉的時間也越多,且開口切面較小,因此翻轉時間較長。也因開口小,所以過陀螺剖面切口兩端點的切線到桌面的角度小,很容易又翻轉回來。

(四) 重心位置對陀螺倒立時間的影響

實驗發現,上層黏土在中線往下 0.5cm 最快倒轉。我們推測,位置越低重心越低, 則重心到支點與軸心構成的角度也越大,而越容易翻轉。其最好的位置根據實驗, 上層黏土在中線往下 0.5cm 處倒轉時間最短。如圖十四。

圖十四、重心位置對陀螺倒立時間的影響


三、以自製倒立陀螺模型驗證陀螺倒轉理論:

(一)初始偏轉角度對陀螺的影響:

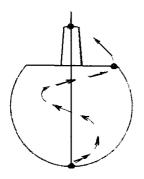
在實驗中發現初始偏轉角度大於 60 度時,旋轉一段時間便會倒轉,由於初始偏轉角度越接近 90 度旋轉越不穩定,所以陀螺便會倒轉尋求穩定。而初始偏轉角度小於 60 度時,雖然倒轉比正轉穩定,但因倒轉先經過更不穩定的 90 度範圍,所以相較之下為了尋求穩定便不倒轉。

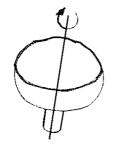
(一) 重心偏移對陀螺倒轉的影響:

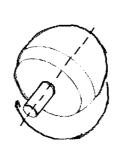
在實驗中發現陀螺重心偏移時, 倒轉比正轉穩定。(如下圖十五)因為偏移的重心到支點與陀螺中線的夾角影響陀螺旋轉的穩定, 角度越大表示要從不穩到穩定所需的能量時間越多, 所以越難穩定。而倒轉的角度(角ACO)比正轉的角度(角BCO)小, 所以倒轉比正轉穩定。

圖十五、重心偏移對陀螺倒轉的影響

捌、結論


經由上述情形可歸納出下列九點


- 一、經由觀察基本陀螺的各種型態,可以列出下列各種實驗:
 - 1. 黏土上下比的影響
 - 2. 陀螺總值量(黏土重量)的影響
 - 3. 切口大小的影響
 - 4. 重心位置的影響。


而又得知陀螺的重量大部分在底部;且轉軸呈一圓面,並非一圓錐。


二、陀螺倒轉的原因是因為陀螺重量分部不平均,以至於陀螺在旋轉時會晃動,但經基本 觀察得知,陀螺重量偏底部,所以倒轉後重心位置移至上方,到切點的角度變小,晃 動程度變得較小,因此而翻轉。

- 三、從陀螺黏土的上下比中,得知黏土重量分布靠底下,翻轉前重心到支點的角度比翻轉 後還大,所以翻轉後晃動程度較小,因此陀螺為了保持穩定而倒轉。
- 四、從陀螺總重量實驗中,得知陀螺重量太小時,向下的正向力過小,正向力太小摩擦力也太小,因此陀螺不易倒轉;反之,如果黏土重量太大,轉動時慣性增加,增加到足以抵抗使陀螺倒轉的摩擦力時,陀螺便不倒轉。
- 五、從陀螺切口大小實驗中,陀螺切口大旁邊的弧面減少,所需翻轉的路程減少,所以很快就會因開口為一個面而翻轉過來,且開口大,過陀螺剖面切口兩端點的切線到桌面的角度大,很難再翻回來;反之開口小時弧面大,所需翻轉的時間也多,且開口切面小,因此翻轉時間長。也因開口小,所以過陀螺剖面切口兩端點的切線到桌面的角度小,很容易翻轉回來。
- 六、上層黏土位置越低重心越低,則重心到支點與軸心構成的角度也越大,而越容易翻轉。 但若重心過低就不易翻轉。
- 七、初始偏轉角度大於 60 度時,旋轉一段時間便會倒轉,由於角度越接近 90 度旋轉越不穩定,所以陀螺便會倒轉尋求穩定。而角度小於 60 度時,因倒轉經過更不穩定的 90 度範圍,所以相較之下便不倒轉。
- 八、偏移的重心到支點與陀螺中線的夾角影響陀螺旋轉的穩定,角度越大表示要從不穩到 穩定所需的能量時間越多,越難穩定。而倒轉的角度比正轉小,所以較穩定。
- 九、本實驗證實:陀螺的倒立並非「重心在高處比較安定」;而是因為重心低於中心點的陀螺,倒立之後的重心偏移角度會比正立時小,所以旋轉時為了保持角動量而會移向晃動較少、摩擦力較小的方向,再加上旋轉過程重心有保持在旋轉軸的傾向更能傾向倒立的位置。(如圖十六)

圖十六、陀螺倒立過程圖

十、我們希望將來能由這個實驗來探討地磁翻轉的原理。

玖、參考資料

- 一、梁肇基(民75)轉動動力學;**基礎物理學**,p.409~443;復文書局。
- 二、Jearl Walker, 葉偉文譯(民 89)不穩定陀螺;**物理馬戲團 1**, p.94-95;天下文化出版 社。

(第三名)

- 1. 利用乒乓球設計研究工具頗具巧思,對問題的探討深入
- 2. 有關實驗依據的理論及原理上應再加強,減少錯誤。