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Abstract. Gas flows in nano/micro-scale channels are of considerable practical as well as scientific interest. The present 
discussion is guided by experience gained during investigations at USC of three technologies; all involving the use of gas 
flows in both relatively long and short channels with characteristic cross-sectional dimensions from millimeters to 
nanometers. One technology is a meso-scale, continuous trace-gas pre-concentrator, for portable detection of fractional 
trace-gas concentrations down to 1E-12. Flow channels in the pre-concentrator, which range in characteristic lateral 
dimensions from several tens of micrometers to below one nanometer, can be driven by either relatively modest pressure 
and/or temperature differences. Another technology is a micro/meso-scale solid state compressor or vacuum pump, now 
relatively well known as the Knudsen Compressor. It has no moving parts and is driven by thermal creep flow, which in 
one version is generated by applying longitudinal temperature gradients along the walls of the flow channels. The 
channels have cross-sectional dimensions varying from hundreds of micrometers to tens of nanometers. Both of these 
technologies generally operate at around atmospheric pressure or below, resulting in flow conditions that are 
predominantly in the rarefied and transitional flow regimes. A third technology is the use of thermal creep, or more 
generally temperature gradient (thermal stress and creep) driven flows, that generate ‘radiometric’ forces for micro-scale 
actuators, and perhaps nano/micro/macro-scale actuators. The nano/micro/macro-scale actuators are envisioned as a 
macro-scale assemblage of large numbers of component nano/micro-scale actuators. The predominant characteristics of 
thermal creep and thermal stress flows are; relatively low flow speeds, and a requirement for both Knudsen and 
transitional regime Knudsen numbers in order to provide suitable actuator force levels. 
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INTRODUCTION 

An important consideration, for describing and understanding flows in nano/micro-scale channels and 
radiometric-force-actuators (RFA’s),1,2 is the vastly magnified role of the surfaces of the flow channels or actuators 
compared to geometrically similar macro-scale flows with the same Knudsen number.3 The surface topology, as 
well as the interaction of gas molecules with the molecular lattices that form the surfaces, can have important 
influences on a flow’s characteristics. Also, for most of the range of flow cross-sectional sizes under consideration, 
the quantity of adsorbed gas on the surfaces can easily be equal to or larger than the amount of gas outside of the 
influence of the surfaces’ potential wells. The development of flow based nano/micro-systems would be 
significantly simplified if accurate and time-effective numerical modeling were available, particularly in complex 
geometric situations where high-resolution experimental flow diagnostics is limited, difficult to apply, or 
impossible. Gas flows in trace-gas pre-concentrators, Knudsen Compressors, and RFA’s, are frequently in 
significant non-equilibrium because of rarefaction effects. Consequently the constitutive relations for the stress 
tensor and the heat flux vector, in terms of macroscopic parameters (bulk velocity, density, temperature) that appear 



in the Navier-Stokes equations, break down. It follows that conventional CFD modeling approaches become 
unattractive, particularly when difficult wall boundary conditions are anticipated. The modeling should be based on 
microscopic, kinetic descriptions.  

    The use of two kinetic approaches will be discussed, with directly comparable examples of their applications 
to flows that are characteristic for each of the three nano/micro/macro-scale gas flow based technologies mentioned 
previously. The currently accepted gold standard kinetic approach is the direct simulation Monte Carlo (DSMC) 
method.4,5 The DSMC method has proven to be a powerful and validated numerical tool for modeling high-speed, 
rarefied gas flows.6 However, applications of this stochastic kinetic approach for low speed gas flow systems is 
difficult, due to significant computational costs (time) resulting from inherent statistical scatter. It also becomes 
increasingly computationally costly as the flow Knudsen number decreases towards the continuum flow regime. The 
second kinetic approach is to obtain deterministic solutions, by applying a discrete ordinate method to the 
ellipsoidal-statistical (ES) model kinetic equation that provides realistic Prandtl numbers.7 The primary advantage of 
this modeling technique is its relatively high computational efficiency compared to the DSMC method, coupled with 
excellent agreement in predicted, detailed flow properties between the two approaches for both temperature and 
pressure gradient driven flows. Several examples of the use of both of these techniques to support the interpretation 
of experimental results have been presented.7  

The 19th RGD Conference, held at Oxford University during July 1994, marked the revival of Crookes’ 
radiometer as a subject of technical interest. Papers by Wadsworth et al,8 Pham-Van-Diep et al,9 Ota and Katawa,10 
Soga et al,11 and Aoki et al,12 applied Bird’s DSMC technique4 to the study of selected low speed, thermal stress and 
thermal creep flows that could be applicable to RFA’s. Since that time there have been active experimental, 
theoretical, and computational developments relating to RFA’s, primarily in Japan and the USA. Knudsen 
Compressors, which were introduced at the Oxford meeting by Pham-Van-Diep et al,13 have been studied in several 
forms at the University of Southern California14,15,16 and at Kyoto University,17,18,19,20 including one joint paper. 2 

Traditionally, the initial period of interest relating to radiometric forces is considered to have begun in 1873, 
with the exhibit by W. Crookes of a radiometer at a soirée of the Royal Society of London.21 From that time up until 
the 1930’s there was an enthusiastic exchange of opinion about the cause of the radiometer effect. Among those 
contributing to these investigations were; O. Reynolds,22 J. C. Maxwell,23 M. Knudsen,24,25 A. Einstein,26 H. Marsh, 
E. Condon, L. Loeb,27 H. Marsh,28 G. Hettner,29 and E. Brueche and W. Littwin.30 The summaries of this work 
presented by L. Loeb,31 E. H. Kennard,32 and S. Dushman33 are a convenient review of important studies from 1873 
to the late 1930’s. More recently there has been a steady effort from a broad community located in Asia, Europe, 
North America, and Australia, involved in developing 
analytical and numerical techniques for studying low speed, 
non-isothermal, rarefied flows. M. Kogan and his colleagues in 
Russia have studied slow non-isothermal flows34,35,36 in a gas 
where (ΔT/T)~1 (SNIFs in their terminology). Contributions 
from Y. Sone and his colleagues at Kyoto University addressed 
slow rarefied flows for both high37 and low38 Knudsen 
numbers. A very recent monograph by C. Cercignani, 
addresses the subject of slow rarefied flow applied to micro-
electromechanical systems39.  Finally, the development by G. 
Bird40,4 of the DSMC technique coupled with suggestions by 
his many disciples has provided, as of the 1990’s, an effective 
although somewhat time consuming tool for studying slow, 
non-isothermal rarefied flow problems at not extremely small 
Knudsen numbers.  

The DSMC technique is invaluable in helping to sort out 
questions raised by experimental results in areas discussed later 
in the paper. However it does not have as fast a turnaround 
time in this role as one might hope. Because of this, the USC 
group has been looking at the possibility of applying the 
Elliptical-Statistical (ES) model of the Boltzmann equation to 
the types of flows that appear in our experiments. This 
development has been pursued primarily by A. Alexeenko in 
collaboration with S. Gimelshein and others.7,41,42,43 The ES 
model has resulted in several recent publications. It has been very successful in providing accurate results as 
established by comparison to the same calculations by the DSMC technique. At the same time, it typically results in 

Figure 1: X-component of Velocity along the 
Channel Centerline Obtained by 
DSMC, ES and BGK Models for a 
Temperature Gradient Driven 
Flow in a 2-D Channel44 



Table II Summary of Results from Calculations for Two ERFA’s45

significantly greater than a 10 times reduction in computation time.  Details of this research are presented in the 
references mentioned above.  An example of a typical comparison is presented in Fig. 1 for a temperature gradient 
driven flow.44 

RADIOMETRIC FORCE ACTUATORS (RFA’S) 

Enclosed RFA’s 
In 1996 Wadsworth et al45 published the results of a computational investigation, using the DSMC method, for 

an enclosed micro-scale radiometric force actuator (ERFA). A schematic cross-sectional view of the actuator is 
shown in Fig 2, with dimensions used in the study reviewed in Table I. The force surfaces (1,2,3,4) that define a 
typical radiometric enclosure are indicated in Fig.2. 
They were assumed to be held at temperatures 
T1=T2=T3= 300K, and T4=600K. Because of concerns 
about maintaining large temperature differences in 
micro-scale devices, a transient heating variant for 
surface 4 was integrated with the vane configuration 
illustrated in the lower half of Fig. 2 (in an actual 
actuator both sides of the actuator would have to be 
similar in order to balance significant forces that occur 
normal to the x-direction). In the transient variant every 
vane is a distance H thick in the x direction. Changing 
the angle θ was studied but for the results discussed here 
θ = 45o. A condensed version of the results are presented 
in Table II. Detailed discussions 
for the thick wall transient 
heating option is discussed in 
Ref 45.  It is clear from Table II 
that the constant heating option 
produces much higher forces, 
but the difficulty in maintaining 
relatively larger temperature 
difference in micrometer sized 
enclosures likely dictates that 
some form of transient 
temperature difference would 
have to be adopted. A study of 
“Thermal Transpiration at 
Microscale”, using transient 
heating of a cantilever, recently 
has been reported by Passian et 
al. 46 This study has made in 
part made use of semi-enclosed 
RFA’s. Very recently, a macro-
scale ERFA has been built and 
tested by Park.47 The vanes were 
mounted in a 15 cm. 
diameter, 25 cm. long 
cylindrical array, corresponding to the illustration for thin vanes in Fig. 2. In this case the analog to surface 3 was 
cooled by liquid nitrogen and surface 1 was heated by a resistive heater. The vanes were 2mm thick aluminum, 
which maintained a constant temperature roughly half way between the hot and cold surface temperatures. The 
pressures in the test environment were 100–400 mTorr. The torque generated by the vanes was measured and 
compared to results predicted from DSMC simulations. Knudsen numbers, temperatures and pressures observed 
during the experiments were used in the calculations. A typical example of predicted and experimental torques, 
normalized by the pressure for each experiment or simulation, is presented in Fig 3. The agreement is quite 
reasonable considering the depressed zero of the torque/Pressure axis, and the difficulty of the experiments. 

Table I Geometry of Two Model ERFA’s. Wadworth's  DSMC Calculations45 

Quantity Unit H= 10μm H = 1μm H=0.1 μm 
Radiometric Force Per Unit 
Cross-Sectional Area, Thick 
Vanes (transient heating) 

 
N/m2 

 
1.5E2 

 
6.5E2 

 
1.7E2 

Radiometric Force Per Unit 
Cross-Sectional Area of 
Actuator, Thin Vanes 
(constant heating) 

 
N/m2 

 
3.0E2 

 
1.3E2 

 
3.4E2 

Quantity Unit H= 10μm H = 1μm H=0.1 μm 
Vane Width μm 100 100 100 
Actuator Length μm 100 100 100 
Number of Thin Vanes 
(slider 0.5 length of 
actuator) 

--  
5 

 
50 

 
500 

Number of Thick Vanes 
(transient heating option) 

--  
2.5 

 
25 

 
250 

Knudsen Number Based 
on H 

--  
7E-3 

 
7E-2 

 
7E-1 

Figure 2 Force Surfaces of a ERFA Actuator45
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Open RFA’s 

The alternative to ERFA’s is the open RFA or 
ORFA. Crookes radiometer was an ERFA due to 
the close proximity of the glass bulb  in which the 
vanes rotated. There have been a number of recent 
discussions relating to the use of radiometric 
forces to maintain vehicles at high altitudes. This 
is   an open radiometric force phenomena since, 
unlike Crookes radiometer, the thermal creep flow 
field has no boundaries. One such approach48, 
proposes a ground based microwave beam to 
support a radiometric force vehicle at an altitude 
of about 70 km. The microwave beam creates 
temperature differences in carbon fiber sails 
attached to a payload. The fibers are about one 
local mean free path in diameter. The fibers are 
also separated from each other by a distance of 
about one local mean free path. This approach has 
been based on an idea, proposed by Einstein,26 that 
a significant fraction of the force generated by an 
open radiometer at low Kn is provided by a one 
mean free path wide strip at the edge of the 
radiometer vane. This suggestion has never been 
convincingly demonstrated experimentally. 
Furthermore, to increase the effect, it has been 

suggested that a large number of small flow channels, connecting the hot and cold surfaces, be embedded in a large 
radiometer vane. Each channel would be about one mean free path in cross-sectional characteristic size,. This 
strategy of using a large number of partly enclosed RFA’s (PERFA) in principle can provide a significantly 
increased edge area. Also, there would be an additional thrust due to the thermal creep pumping of gas from cold to 
hot through the channels. If all of the newly made edge area contributed according to Einstein’s hypothesis, the 
increased edge effect would provide a much greater force increase than the thrust originating from the flow through 
the channels.  

The USC group has been looking at this issue both experimentally (N. Selden, A. Ketsdever) and using DSMC 
simulations (S. Gimelshein, C. Ngalande). From our present experiments and calculations, there is no indication that 
Einstein’s hypothesis can be extended to densly packed mean free path scale elements in a continuum vane. The 
results of this USC study should be available by the end of 2007.   

KNUDSEN COMPRESSORS AND RADIOMETRIC PHENOMENA 

During the investigation of low-pressure 
Knudsen Compressor performance, 16,49 
rarefaction effects other than thermal creep 
flows were observed. The temperature 
gradient imposed on the Knudsen 
Compressor membrane’s surface has induced 
internal flow circulation in the connector 
section.50 The flow circulation is similar to 
what was observed by Wadsworth in his 
study of Crookes’ radiometer.8 The original 
Knudsen Compressor performance model 
employed flow coefficients, calculated from 
a linearization of the Boltzmann equation, 
that could not accurately predict this complex 
flow situation.  

Figure 3 Comparison of DSMC Predictions and
Experiment by Park. Diffuse Reflections Were
Assumed for the Prediction47 

Figure 4 Gas Temperature Map of the Knudsen 
Compressor from a DSMC Simulation  

  1

  2

 3

T (K) 

Y / h

X / h 

Hot Connector

Cold 
Side 

Membrane 
Channel 



1

1.05

1.1

1.15

1.2

1.25

-30 -20 -10 0 10 20 30 40 50 60 70 80

x/h

p/p L,avg

Knh/2=2.69, KnH/2=0.54

Knh/2=2.71, KnH/2=0.27

Knh/2=2.73, KnH/2=0.22

Knh/2=2.79, KnH/2=0.11

Using the DSMC simulation technique, thermal creep flows through a short (length/height = 5, h =height of the 
membrane channel) 2-D channel were studied.51 One particular temperature profile of the simulation domain is 
shown in Fig 4. This particular case was designed to mimic the experimental single stage design,16 which had a 
discontinuous temperature profile. As shown in Fig. 4, section 1 and section 2 of the vertical wall were kept 
respectively at a constant cold temperature (TL) and a constant hot temperature (TH). The horizontal wall of the hot 
chamber (section 3) was set to be a constant cold temperature (TL). Due to the temperature profile along the walls, 
flow circulations were induced near the outlet of the membrane channel as shown in Fig. 5. The pressure increase 
through a Knudsen Compressor stage is an important performance indicator of the Knudsen Compressor. Fig. 6 
presents pressure ratios along the centerline of the simulation domain for different connector Knudsen numbers 
(KnH/2, H= height of the connector section). For a small KnH/2 (eg. 0.11), the pressure increase through the 
membrane channel could be maintained till the end of the connector section (p/pL,avg ~ 1.24 at x/h =80). As KnH/2 
increases, the pressure ratio at the end of the connector section drops significantly. It is evident that the internal flow 
circulations introduced significant pressure drops through the hot connector section at higher Knudsen numbers, 
compromising the Knudsen Compressor’s performance. The impact of thermally induced internal flows on the 
performance of Knudsen Compressors is discussed by Han.51  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CONTINUOUS TRACE GAS PRE-CONCENTRATOR 

The operating theory and the preliminary design of the preconcentrator was based on three separation 
mechanisms: mass separation, quantum separation, and size separation. The pumping chambers and flow channels 
of the continuous preconcentrator52 are illustrated in Fig. 7. The flow channel has a constant height and varying 
width, while the pumping chambers have constant widths and varying heights. Nanomembranes form the upper and 
lower surfaces of the concentrator's flow channel. Pumping chambers back each of the nanomembranes. Sampled 
gas is continuously drawn into the flow channel from the local atmosphere or other source. In order to minimize 
pumping energy requirements both the flow speed of the sampled gas and its number density remain essentially 
constant throughout the flow channel. The sampled gas is overwhelmingly a diluent or carrier gas, with trace 
concentrations (1 to 10-3 ppb) of target molecules. It is of interest to enhance the trace concentrations of the target 
molecules. As the sampled gas travels down the flow channel the generally lighter and smaller diluent gas molecules 
preferentially escape through the nanomembranes into the pumping chambers. The flow channel has a height of 
around 100 μm and the flow is well into the continuum flow regime with a pressure of one Earth atmosphere, while 
the flow through the nanomembranes is in the molecular flow regime. The width of the flow channel is adjusted to 
account for the loss of carrier gas through the nanomembranes in order to keep the flow speed constant throughout 
the separation stage. The cross-sectional area of the pumping chambers, perpendicular to the downstream x direction 
in the channel, is adjusted by changing the height of the chambers according to the requirements of continuity. The 
result is both a constant average flow speed in the x direction and an approximately constant diluent gas number 
density throughout the pumping chambers. 

Figure 5 Thermally Induced Internal Flow Circulations Figure 6 Pressure Ratios along the Centerline of
the Simulation Domain 

X / h 
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For the analysis of the basic flow field of the preconcentrator, concentrations of the target molecules were 
assumed to be so small that they have no influence on the gas dynamics in the flow channel. Once the diluent flow 
field is determined, the target molecules are introduced by linear superposition. The separation membranes were 
modeled as an array of aligned capillaries with nanometer to subnanometer internal diameters and relatively short 
lengths. As a consequence of diffusive or mass selection and/or size selection, the membranes inhibit target 
molecules from passing through the capillaries while allowing the diluent gas to pass more freely.  The capillaries 
will be in the collisionless flow regime up to pressures of one atmosphere. For the preconcentrator to work 
continuously for long periods, it is most convenient if the target molecules or other gases do not condense in the 
capillaries due to the phenomenon of pore condensation. Thus, the rejection of these molecules from the capillaries 
may be important. Theoretically, two rejection phenomena, quantum and size sieving can be considered.52 In 
quantum rejection the channel diameters are marginally larger than if the filtering is based on pure size sieving, as in 
molecular sieve materials. Quantum sieving can be estimated based on the gas-molecule/surface-molecule 
interactions.53  

 
 
 

 
  
 

Figure 7  Illustration of the Continuous Trace Gas Preconcentrator 
     
For the preconcentrator application, an initial theoretical analysis52 has predicted excellent performance if a 

suitable membrane is employed. Fig. 2 illustrates the concentration of the target molecules at a distance, x, from the 
inlet for a single concentration stage, obtained using the analytic estimates in Ref. 52. The open area fraction for the 
target molecules, FT, is varied from 0, corresponding to complete physical or quantum filtration of the target 
molecules, to FA, the same open area fraction as for the diluent molecules. For the latter case the concentration is 
provided only by the difference in mean thermal speeds of the diluent and target molecules. For these results the 
diluent gas was assumed to be air and the target gas had an assumed molecular weight of 150. Unlike traditional 
gaseous diffusion separations, which are notorious users of pumping energy, the approach here is to employ a 
relatively small pressure ratio of two or less. For the data presented in Fig. 8 the pressure ratio was 0.5, and the flow 
speed was 2.5 cm/s. At a distance of 1.5 cm it is possible to concentrate the target molecules by a factor of 10 with 
no size filtration. With complete size filtration the concentration increase is a factor of 100 at a shorter distance.  

In order to achieve the performance discussed above, the requirements for the separation membrane can be 
realized as the following: be thin enough for individual channels to have relatively high transmission probabilities or 
pumping speeds; have a high open area fraction (preferably > 0.01); and be strong enough to support moderate 
pressure differences (pressure ratio ~ 2 ).52  

Several techniques for assembling arrays of nanometer scale capillary channels with acceptably small length to 
diameter ratios for use in transmission membranes have been demonstrated.54,55,56 Martin et al reported the 
construction of template-synthesized nanotube membranes.54 Based on commercially available nanoporous 
membranes as a template, polymer is synthesized by oxidative polymerization of the corresponding monomer within 
the pores. This may be accomplished either electrochemically or with a chemical oxidation agent. The inner pore 
diameter of the template-synthesized membrane can be smaller than 3nm and the size and thickness of the 

z 

Pumping Chamber 

Flow 
Channel 

h Note: Scale is distorted in this sketch due to expansion of z axis
 (b) Flow Channel Top View 

 

 

Note: Scale is distorted in this sketch due to expansion of z axis 
 (a) Continuous Pre-Concentrator 

Note: Scale is distorted in this sketch due to expansion of membrane channels
Flow Channel Side View 

W(x) Flow 

h 
Flow 

L 

Separation 
Membrane  

Separation 
Membrane 

Pumping Chamber 

x 

x 

y 



C
on

ce
nt

ra
tio

n 
of

 th
e 

Ta
rg

et
 G

as
 

M
ol

ec
ul

es
 

membrane can be easily controlled according to selected templates. However, the fractional open area can barely 
meet the 0.01 requirement. Unless higher pore density and smaller pore diameter of the templates can be achieved, 
the template-synthesized membranes would not be able to provide satisfactory results in preconcentrator 
applications.52 

Aligned multi-walled carbon nanotube membranes 
reported by Hinds et al55 were obtained by filling space 
between CNTs with a continuous polymer film, the 
normally closed ends of the CNTs were etched open. 
The length of the nanotubes within the polymer can be 
reduced by selective electrochemical oxidation. This 
makes the membrane thickness flexible. A membrane 
with 5μm thickness, 7.5 nm inner tube diameter, and 
with a fractional open area of 0.027 has been 
demonstrated. The great improvement of the fractional 
open area from the template-synthesized polymer 
membrane compared to the multi-walled carbon 
nanotube membrane assures the initial choice of carbon 
nanotube membranes as preconcentrator membranes. 
Also, simulation results57 have shown that Ar and Ne 
transport diffusivities are about three orders of magnitude 
higher in single-walled carbon nanotube membranes than 
in silicalite membranes with the same thickness.57 
However, experimental validations have not been performed.  

Another carbon nanotube membrane is the “bed-of nails” membrane made from single-walled carbon nanotubes 
developed by Smalley et al.56 Suspended in a fluid, SWNTs can be oriented by applying a magnetic and/or electric 
field. SWNTs become aligned with their longitudinal axes parallel to the applied field. The aligned SWNTs are 
removed from the suspension in such a way that they can be assembled while maintaining their alignment. The 
desirable properties of this membrane are ultrahigh pore density, up to 1014/ cm2, and a narrow distribution of pore 
size that is tunable from 0.4 to 3 nm. This method originally presented a membrane with sizes up to 15 μm x 15 μm, 
thicknesses of 75 nm or less, and with a fractional open area of 0.7. Within one year, a membrane of area more than 
1 cm2 and thickness more than 1 μm was produced.58 This progress demonstrates the rapid growth of carbon 
nanotube membrane technology.  

Single-walled or multi-walled carbon nanotube membranes are the primary choices for the continuous trace gas 
preconcentrators due to the large fraction of open area. Currently, fabrication of such carbon nanotube membranes 
has been initiated.59 The experimental validation of the continuous trace gas preconcentrators will follow successful 
creation of a candidate membrane.  

Careful studies of candidate membranes, including pumping using an applied temperature difference, will rely 
on the techniques developed from studies of Knudsen Compressors that have been as discussed above and have been 
reported in several publications.14,15,16,44                      

SUMMARY 

 Work at USC on low speed rarefied flows has been outlined. There are a surprising number of widely varying 
applications where such flows are important.  
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Figure 8 Target Gas Concentration Effectiveness
– Flow Speed =2.5cm/s 
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