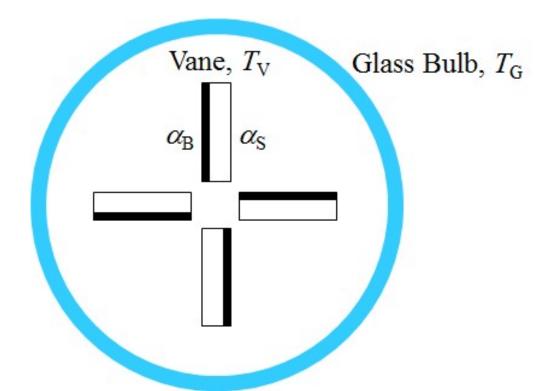
Another possible origin of temperature and pressure gradients across vanes in the Crookes radiometer

Kazuki DENPOH

Aug 18, 2017

The Crookes Radiometer [1,2]

- 4 vanes in a glass bulb partially evacuated.
- One side of vane is black and the other side is shiny.
- Vanes revolve with shiny side leading under sunlight.


Past Simulation Studies [3-10]

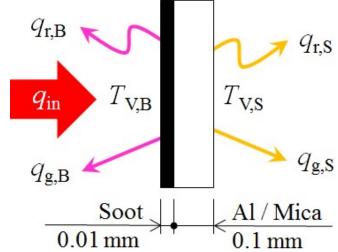
- Great efforts made by many researchers to reveal forces on vanes
 - thermal transpiration / thermal creep force due to ΔT
 - area force by Δp
- Assumptions used in every work
 - temperature at black side of vane is higher than that at the shiny side, $T_{\rm B} > T_{\rm S}$.
 - accommodation coefficient α is uniform and same at both sides of vane.

New Hypothesis proposed in This Study

- Vanes is **isothermal at** $T_{\mathbf{V}}$.
- Accommodation coefficient α_B at black side of vane is different from that at shiny side α_S , and $\alpha_B > \alpha_S$.

Estimating Vane Temperature

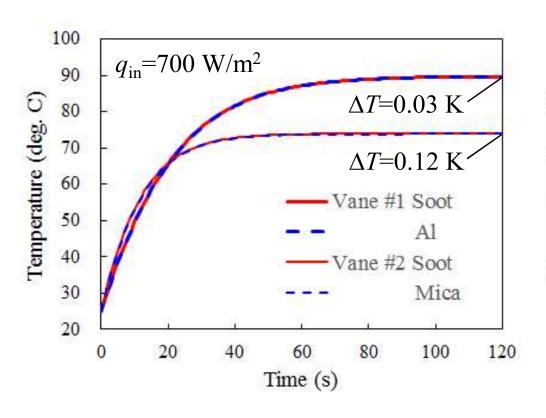
Heat balance equations under Biot number $Bi \ll 1$

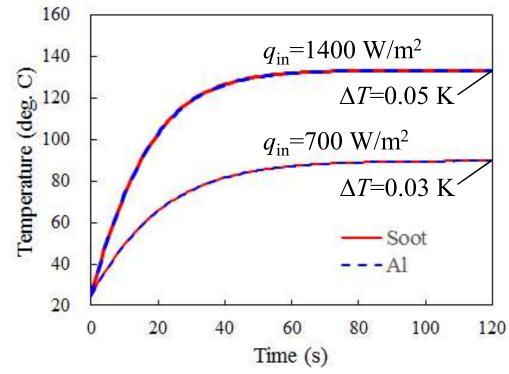

$$\begin{cases} q_{\rm in} - \left(q_{\rm g,B}^t + q_{\rm r,B}^t\right) = -\kappa \frac{\partial T_{\rm V}^t}{\partial x} \\ \rho L_{\rm b} C_{\rm p} \frac{\partial T_{\rm V}^{t+\Delta t}}{\partial t} = q_{\rm in} - \left(q_{\rm g,B}^t + q_{\rm r,B}^t\right) - \left(q_{\rm g,S}^t + q_{\rm r,S}^t\right) \\ q_{\rm g,B/S}^t = \frac{1}{4} n \bar{v} \Delta E = \frac{1}{2} n k \sqrt{\frac{8kT_{\rm g}}{\pi m}} \left(T_{\rm V,B/S}^t - T_{\rm g}\right) \\ q_{\rm r,B/S}^t = \varepsilon_{\rm B/S} \sigma \left\{ \left(T_{\rm V,B/S}^t\right)^4 - T_{\rm g}^4 \right\} \end{cases}$$

Ambient

$$q_{\text{r,B/S}}^t = \varepsilon_{\text{B/S}} \sigma \left\{ \left(T_{\text{V,B/S}}^t \right)^4 - T_{\text{g}}^4 \right\}$$

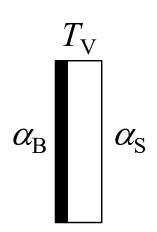
Material Properties [11-14]


6	ρ (kg/m ³)	C_{p} (J/kg-K)	κ (W/m-K)	ε
A1	2688	905	237	0.17
Mica	2100	880	0.5	0.72
Soot	100	1000	0.05	0.95

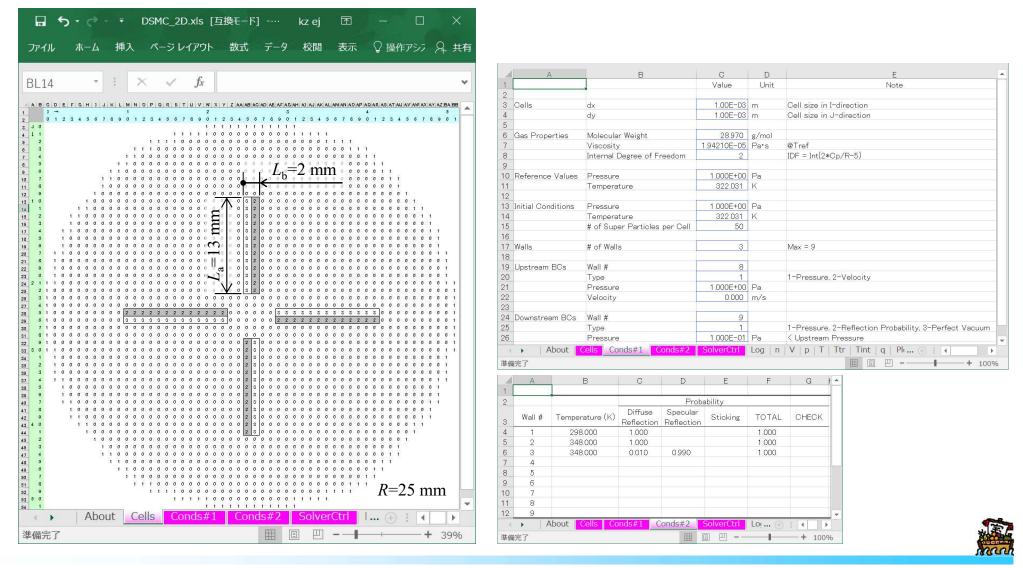


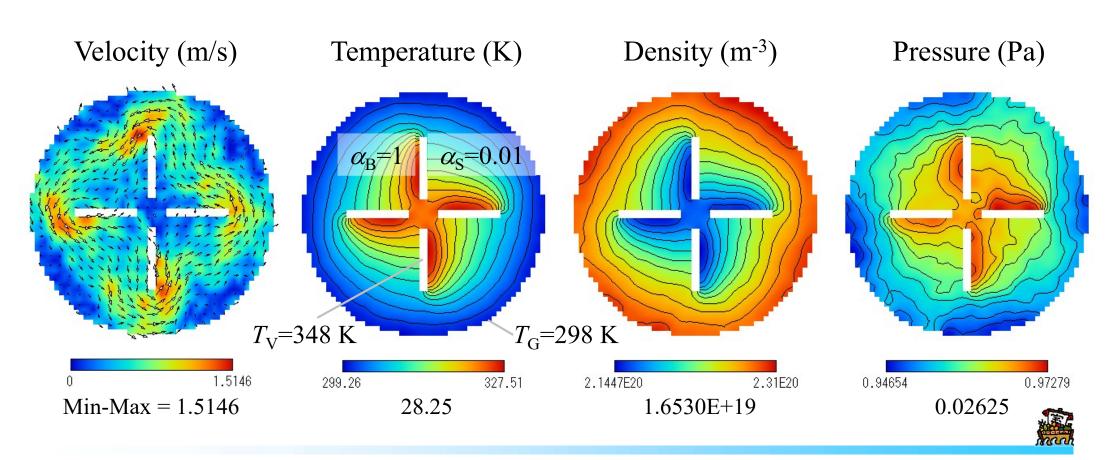
Estimating Vane Temperature (cont'd)

- Typical heat flux of sunlight is $700 1400 \text{ W/m}^2$ [15,16]
- Calculated Biot number Bi < 0.01.
- Vane is isothermal under sunlight.



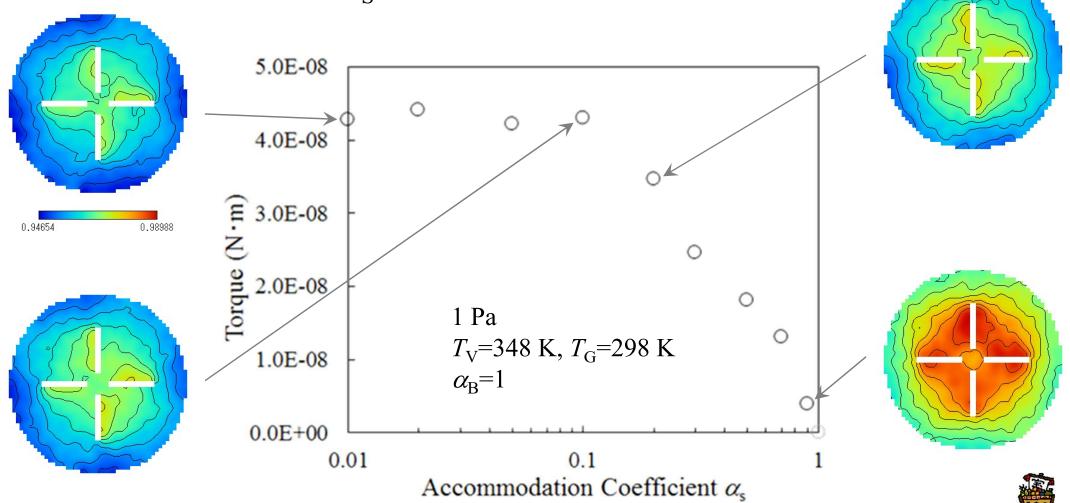
DSMC 2D.xls [17]


- Multipurpose 2D DSMC software created on MS-Excel
 - www2b.biglobe.ne.jp/~denpoh/Software/DSMC_xls/
- Gas (Air)
 - Diatomic molecule with rotational degrees of freedom
 - Molecular model: Maxwell molecule
 - Collision models: VHS model, Larsen-Borgnakke model
- Accommodation coefficients
 - Black side: $\alpha_{\rm B} = 1$ (diffuse reflection)
 - Shiny side: diffuse reflection α_s + specular reflection $(1 \alpha_s)$

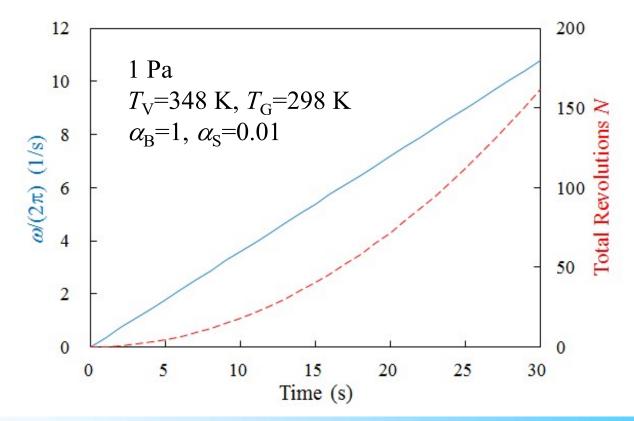

Model Setup in DSMC 2D.xls

• Vane length $L_a = 13$ mm, thickness $L_b = 2$ mm

Example Flow Fields


- ΔT and Δp across vane are produced.
- ΔT induces thermal creep flow.
- Δp acts as area force to push vanes from black side.

$\alpha_{\rm B} > \alpha_{\rm S}$ produces Torque


• Torque by Δp increases with decreasing α_S for $\alpha_S > 0.1$,

• then saturates for $\alpha_{\rm S} < 0.1$.

Rotation Speed of Vanes

- Estimated by assuming torque of stationary vanes is the same as freely rotating vanes.
- Should be valid only at early state of starting rotation. [8]
- Time scale is sec-order as commonly observed.

What if Glass Bulb is Heated Up? $(T_G = T_V)$

- Flow fields are uniform $(\Delta T -> 0, \Delta p -> 0)$ even for $\alpha_{\rm B} \gg \alpha_{\rm S}$.
- Apparent thermal creep flow is not induced.
- Revolution of vanes will stop.

Summary

- New hypothesis
 - "Vane is isothermal, and $\alpha_{\rm B} > \alpha_{\rm S}$ "

has been proposed and investigated using heat transfer and DSMC simulations.

- The results have proved
 - vane is isothermal under sunlight, and
 - contrast of $\alpha_{\rm B}$ and $\alpha_{\rm S}$ can be an origin of ΔT and Δp across vane.
 - $-\Delta p$ works as an area force to push vanes.
- Also found glass bulb temperature strongly affects revolution of vanes.

References

- [1] P. Gibbs, math.ucr.edu/home/baez/physics/General/LightMill/light-mill.html, 1996.
- [2] S. R. Wilk, Optics & Photonics News, 2007, pp. 17-19.
- [3] M. Ota, T. Nakano, and M Sakamoto, Trans. Japan Soc. Mech. Engineers, B, 65 (1999), pp. 2016-2022.
- [4] M. Ota, T. Nakano, and M Sakamoto, Math. and Comput. Sim., 55 (2001), pp. 223-230.
- [5] M. Nadler, Diploma Thesis, Institute for Astronomy and Astrophysics, 2008.
- [6] L-H, Han, S. Wu, J. C. Condit, N. J. Kemp, T. E. Milner, M. D. Feldman, and S. Chen, Appl. Phys. Lett., **96** (2010), 213509.
- [7] S. Taguchi and K. Aoki, J. Fluid Mech., 694 (2012), pp. 191-224.
- [8] S. Chen, K. Xu, and C. Lee, Phys. Fluids **24** (2012), 111701.
- [9] G. Dechriste and L. Mieussens, 2015. <hal-01131756>.
- [10] D. Wolfe, A. Larraza, and A. Garcia, Phys. Fluids, 28 (2016), 037103.
- [11] SENSBEY, "各種物質の熱的性質", www.sensbey.co.jp/pdffile/materialpropety.pdf
- [12] K. Hisahara, Dr. Thesis, Gumma Univ., 2014.
- [13] チノー, "放射率表", www.chino.co.jp/support/technique/thermometers/housyaritsu.html.
- [14] 堀場製作所, "放射温度計のすべて", (2008), www.horiba.com/fileadmin/uploads/Process-Environmental/Documents/thermometry.pdf.
- [15] TECHNO, "熱流束値の目安", www.techno-office.com/file/heatflux-estimate.pdf.
- [16] 圓山, "第8章伝熱問題のモデル化と設計", (2014), www.ifs.tohoku.ac.jp/maru/sub/lecture/hachi2014/data/2014.10/chapter08.pdf.
- [17] www2b.biglobe.ne.jp/~denpoh/Software/DSMC_xls/

