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Crookes radiometer

e invented by W. Crookes (1874)

pparatus is shown in fig. 6. Tt consists of four arms, of very fine glass,
passing l.m.m.mu, through picces of pith (&), and
afterwards bent twice at right angles, as shown in
the figure. Through the centre of the pieces of }4 N

Fig. 6,

pith (5) is passed vertically the point of a very fine [,
sewing-needle (a), which rests in a glass cup (¢) | 7
blown on to the end of the glass tube e. At the \_ 4

end of each glass arm is fastened a thin disk of pith,
white on one side and lampblacked on the other,
the black surfaces of all the disks facing the same
way. The whole is enclosed in a glass bulb blown
on to the end of a wide tube. f is a picce of
coment to keep the support (¢) in its place. g is
the tube containing cocounut-shell charcoal

other end is sealed on to the mercury-pump.

exhaustion is effected as already described (131); e

and the apparatus is then sealed off, with the char-

e rarefied gas effect (Kna 0.1): disappears in vacuum or with
dense gases

e Reynolds, Maxwell:
light — heated vanes

— temperature difference in

white side
temperature Tw

the gas
— force (radiometric forces)




Radiometric forces

e renewed interest: possible application for microflows (MEMS)

e this talk: a numerical tool for 3D simulations of the Crookes
radiometer (based on the Boltzmann equation)

e other applications: any rarefied flow with moving obstacles
(e.g. vacuum pumps)
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Origin of the radiometric forces

e Crookes: radiation pressure ("radiometer")

e Reynolds 1874: pressure difference in the gas

gas

pressure difference

white side
temperature Tw pb>pw

black side
temperature Tb>Tw

“area” effect
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Origin of the radiometric forces

e Reynolds and Maxwell 1879: edge effect

white side
temperature Tw

-~

black side
temperature Tb>Tw




Origin of the radiometric forces

e recent works:

e Gimelshein, Muntz, Selden, Ketsdever, Alexeenko, etc. (2009
to 2012): numerical and experimental studies (single vane,
steady 2D flow)

e Aoki-Taguchi 2012: numerical studies (investigation of various
thermally induced flows, single vane, steady 2D flow)

e K. Xu 2012 : numerical simulation of a 2D Crookes radiometer

e only 2D simulations, few experiments

e still open questions:
e 3D flow structure not known (lack of experiments)
e what is the optimal shape of the vanes?
e what is the distribution of forces on the vanes?



@® Kinetic model



Boltzmann equation

e particles: position X and velocity v

e mass density in phase-space f(t, x, V) ("Distribution function”):
f(t,X, V)dxdv is the mass of particles at x + dx with velocity
v+dv.

e Macroscopic quantities:

) /R3 |

L
= 21l + 2oRT
= pRT

2 f(t,%,V)dv
|

N|—=
W <<t

T m mE©



Boltzmann equation

e equilibrium distribution ("Maxwellian"):

Lo p [d — v|1?
Mlp, 8, T] = (2nRT)32 P ( ORT

e important macroscopic quantity here: stress tensor &

Y (t,%) = /Rs(v— 0) ® (V — 0)f(t,%,7) dv

o force exerted by the gas on a solid surface dS (of normal r):

Fyassds = —XdS.



Boltzmann equation

¢ Boltzmann equation:

of
E+v~vxf_Q(f)

Q(f) is the collision operator

e BGK Model:

of 1 .
¢ 4+ v V,f = ;(M[p, u, T]—f)

e consistency with fluid mechanics



Boltzmann equation

e gas-surface interaction: diffuse reflection

for every reflected velocity,
i.e v such that (v —uy)-n<O0:

o Pw _ v — UW‘z
Flt.xv) = (27 RT.,)3/2 eXp< O2RT,, )

with p,, such that

/ (v—uw) -nf(t,x,v)dv=0
R3

(no mass flux across the wall)



© Numerical method



Numerical Method

CFD with moving obstacles:

e body fitted methods with moving grids (ALE, moving mesh)
e.g. [Chen, Xu, Lee, Cai, 2012].

> high accuracy at solid boundaries
> mesh generation is difficult for complex geometries




Numerical Method

CFD with moving obstacles:

e body fitted methods with moving grids (ALE, moving mesh)
e.g. [Chen, Xu, Lee, Cai, 2012].

> high accuracy at solid boundaries
> mesh generation is difficult for complex geometries

L |mmersed boundary methods e.g. [Filbet Yang 2012], [Perkardan Chigullapalli

Alexeenko 2012], [Bernard lollo Puppo 2014], [Chen Xu 2015]

> automatic meshing
> complex geometries easily handled
> low accuracy at solid boundaries : no mass conservation



Numerical Method

e Cut-cell method:

N\
~_

N\

o Cartesian grid + cut-cells around the solid body

e complex geometries easily handled

e potentially good accuracy at solid boundaries (body fitted
mesh)



Numerical Method

N\




Numerical Method

N\

FORN
~ )

the Boltzmann equation must be solved on changing cells




Basic tools (I): integral formulation

e Boltzmann equation:

0
apf TV Vi = Q(F)

e integrate on a time dependent domain Q(t)

/(t)<§f+v Vi f) dx—/ Q(f)d

e Stokes formula and Reynolds theorem:
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Basic tools (I): integral formulation

e Boltzmann equation:

)
aef TV Vi = Q(F)

e integrate on a time dependent domain Q(t)

/ <8f+v-fo> dx:/ Q(f) dx.
Q(t) ot Q(t)

e Stokes formula and Reynolds theorem:

8/ fdx+/ (v—w)-nfdS= Q(f) dx.
ot Ja s(t) Q1)



Basic tools (Il): finite volume method

e cell average of f on a cell Q7

1
f=— f(t", x,v)dx
7] Jar ( )

e integral equation:

8/ fdx+/ (v—W)‘ndeZ/ Q(f) dx.
ot Ja) S(8) Q(t)

where w is the velocity of the faces of the cell

e first order explicit upwind scheme:

QFFHEE — QA" + Aty Ff = AtQ]|Q(F).
j



Basic tools (Il): finite volume method

e first order explicit upwind scheme:

QFFHETE QA" + At Y Ff = AtQ7|Q(F).
j

¢ numerical flux between cell Qf and QJ'-’:

.7:,3’%/ (v—w)-nf(t",x,v))dS
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> for a gas interface: w =0
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Basic tools (Il): finite volume method

e first order explicit upwind scheme:

QFFHETE QA" + At Y Ff = AtQ7|Q(F).
j

¢ numerical flux between cell Qf and QJ'-’:
.7:,3’%/ (v—w)-nf(t",x,v))dS
interfactef‘/QJ’.’

> for a solid interface: w = u,, (velocity of the solid wall)

Fi = IS [((v =g ) - ng) A7+ (v = u ) - i)~ Mlpw, i, T]]

(v — ) -ny; >0

‘ M P, sy Too]
(v —uj) -ny; <0




Solid-gas coupling

e at t": £ is known for every cell Q7, velocity u]] ; of solid
nodes as well
e new position of grid nodes at t"t1:
n+1 _ _n n
Xp =X+ Atuy, ;

e this gives new cut cells

e average values fi"Jrl on new cells Q;’H are computed with the

finite volume scheme

e force and torque exerted by the gas on the solid wall are
computed with stress tensor + boundary conditions

¢ new node velocity u"/’VJr,-l are computed with Newton laws



Technical details (1): small cell problem

e very small cut cells: very small At
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Technical details (I): small cell problem

e very small cut cells: very small At
— cells merged in a control volume

e time integration in the control
volume

e distribute the gas of the control
volume to its cells :

1
ot /s _fds




Technical details (I): small cell problem

e very small cut cells: very small At
— cells merged in a control volume

e time integration in the control
volume

e distribute the gas of the control
volume to its cells :

1 ' 1
2 fds=— | ¢
5{7+1 /Sf+1 dS 5n+1 /5n+1 dS’
1 1

52+1/5 o5 =g | e




Technical details (I1): disappearing cut-cells

e disappearing cut cell:

! Iteration n ! Iteration n+ 1
1

Boundary at t"

: i Merging 1| Scheme
Al
[ i : 3 i : !
RS o et S N S S B




Technical details (I1): appearing cut-cells

e appearing cut-cell:

! Iteration n ! Iteration n+ 1
1 1
: Boundary at t" Boundary at ¢"*? :
! Ry Ay [ Y/ ) [ A !
[ I Merging | | Scheme ! [ Update !
e T e e i — [P I
v : ! ; : ! 1 i ! !
[ : | | | | ; i | 1
[ N S e S ==t 1




e stable: standard CFL condition

e exact mass conservation



O 2D Simulations



Numerical results

e Simulations of Taguchi and Aoki [2012] :
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Numerical results

e Simulations of Taguchi and Aoki [2012] :
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e Unsteady cut-cell simulation:
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Numerical results

e Simulations of Taguchi and Aoki [2012] :
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Numerical results

e Simulations of Taguchi and Aoki [2012] :
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e Comparison with a body fitted unstructured mesh code
(steady case):
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Numerical results

e 2D radiometer: comparison with Chen et al. (2012, moving
mesh method)

30 Zoom
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Numerical results

e Other application: vacuum pump (Roots pump)
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Numerical results

e Other application: vacuum pump (Roots pump)
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@ Extensions



High performance computing (I): adaptive mesh refinement

e Implementation of a Quadtree
algorithm in space.

e Refinement criterion based on the
distance between the cell and the
nearest solid boundary.

e Coupling AMR - and the cut cell
method is simple.
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High performance computing (I): adaptive mesh refinement

e Implementation of a Quadtree
algorithm in space.

e Refinement criterion based on the
distance between the cell and the
nearest solid boundary.

0 e Coupling AMR - and the cut cell
0 0005 001 0015 002 o
temps (9) method is simple.




High performance computing (II): parallel implementation

parallelization with MPI
load balancing is difficult with moving boundaries

hybrid domain decomposition in space and velocity :

e a small number of subdomains in space
e in each subdomain, the velocity grid is distributed to several
processors

this allows a good load balancing



3D implementation

’ How to treat all the different cut cells in a simple and single way?‘

e a normal cell is a cube (6 faces)
e a cut cell is a polyhedron with 4 to 7 faces

L

i

[
Ll =0y
ol

IL
Figy
[0

|2, 4| = B

e notion of “virtual cell”:

e a virtual cell is a polyhedron with 7 faces, possibly degenerated
e a virtual cell is associated to each cells

e generic treatment of every kind of cut cell
e passing from 2D to 3D is easy



Numerical Results

¢ 3D Radiometer:
> 213 discrete velocities.
> 240 000 cells (AMR).
> 10 000 time steps.
— CPU time: 12h on 128 processors.



3D Simulation

Distance
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Conclusion

e Summary:
> a general method to simulate rarefied flows with moving
obstacles,
> validation in 1 et 2 dimensions
> general treatment of cut cells allows complex 3D simulations

e Perspectives:
> might be useful for exploring radiometric effects, 3D flow
structure, force magnitude and location
> validation of the 3D code (experiments ?)
> 2D free version available soon ("CAKE")
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